lim[(1/(1+2)+1/(1+2+3)+.+1/(1+2+3+...+n) n趋近于无穷大
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 18:44:12
lim[(1/(1+2)+1/(1+2+3)+.+1/(1+2+3+...+n) n趋近于无穷大
∵1/(1+2+3+...+k)=2/[k(k+1)] (k=1,2,3,.) (应用等差数列求和公式)
=2[1/k-1/(k+1)]
∴1/(1+2)=2(1/2-1/3)
1/(1+2+3)=2(1/3-1/4)
.
1/(1+2+3+.+n)=2[1/n-1/(n+1)]
故 lim(n->∞)[(1/(1+2)+1/(1+2+3)+.+1/(1+2+3+...+n)
=lim(n->∞){2(1/2-1/3)+2(1/3-1/4)+.+2[1/n-1/(n+1)]}
=lim(n->∞){2[1/2-1/(n+1)]}
=2(1/2-0)
=1.
=2[1/k-1/(k+1)]
∴1/(1+2)=2(1/2-1/3)
1/(1+2+3)=2(1/3-1/4)
.
1/(1+2+3+.+n)=2[1/n-1/(n+1)]
故 lim(n->∞)[(1/(1+2)+1/(1+2+3)+.+1/(1+2+3+...+n)
=lim(n->∞){2(1/2-1/3)+2(1/3-1/4)+.+2[1/n-1/(n+1)]}
=lim(n->∞){2[1/2-1/(n+1)]}
=2(1/2-0)
=1.
lim(n^3+3^n)^(1/n) n趋近于无穷大的极限
根据数列极限定义证明:lim(1/n^2)=0 n趋近于无穷大.
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】
证明lim n趋近无穷大 [1+2^(1/2)+3^(1/3)+…+n^(1/n)]/n=1
高数求极限lim(1+2^n+3^n)^1/n n趋近于无穷
高数求极限题:lim(n趋近于无穷大),n次根号下为:2+(-1)的n次方
lim n->无穷大(2^n-1)/(3^n+1)
lim√n(√n+1-√n)(n趋近于无穷大)的极限
lim(√n+1-√n)*√n,n趋近于无穷大
(2^n+(-3)^n)/(2^(n+1)+(-3)^(n+1)) n趋近无穷大的极限
极限计算 lim (1+2+3+...+n)/n^2=?(n趋向于无穷大)
lim (sin )/(n!+1),当n趋近无穷大时,