已知a,b,c是互不相等的正数,求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 06:17:53
已知a,b,c是互不相等的正数,求证:2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)
【注:用柯西不等式证明】
证明:
【1】
易知,2(a+b+c)
=[(a+b)+(b+c)+(c+a)].
【2】
由题设及柯西不等式可得:
[(a+b)+(b+c)+(c+a)]×[2/(a+b)+2/(b+c)+2/(c+a)]
≥(√2+√2+√2)²=18.
整理即得:
2/(a+b)+2/(b+c)+2/(c+a)≥9/(a+b+c).
等号仅当a+b=b+c=c+a时取得,但a,b,c互不相等.
故其中的等号不能取得.
∴原不等式成立.
证明:
【1】
易知,2(a+b+c)
=[(a+b)+(b+c)+(c+a)].
【2】
由题设及柯西不等式可得:
[(a+b)+(b+c)+(c+a)]×[2/(a+b)+2/(b+c)+2/(c+a)]
≥(√2+√2+√2)²=18.
整理即得:
2/(a+b)+2/(b+c)+2/(c+a)≥9/(a+b+c).
等号仅当a+b=b+c=c+a时取得,但a,b,c互不相等.
故其中的等号不能取得.
∴原不等式成立.
已知a,b,c是正数,求证:a^(2a)b^(2b)c^2(2c)≥a^(b+c)b^(c+a)c^(a+b)
已知a,b,c是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a+b)
已知a,b,c是正数,求证a^(2a)b^(2b)c^(2c)≥a^(b+c)b^(c+a)c^(a+b).
用柯西不等式证明2/a+b +2/b+c +2/c+a大于9/a+b+c a.b.c为互不相等的正数
已知a,b,c为互不相等的实数,且满足(a-c)^2-4(b-a)(c-b)=0求证:2b=a+c
已知a,b,c是正数,求证 a^2(b)×b^(2b)×c^(2c)大于等于a^(a+b)×b^(a+c)×c^(a+b
a、b、c互不相等,则2a-b-c/(a-b)(a-c)+2b-c-a/(b-c)(b-a)+2c-a-b/(c-a)(
已知a,b,c是不全相等的正数,求证(b+c-a)/a + (c+a-b)/b + (a+b-c)/c >3
已知a+b+c=0,且a、b、c互不相等.求证:a^/2a^+bc+b^/2b^+ca+c^/2c^+ab=1.
已知abc是正数,求证a^2a*b^2b*c^2c大于等于a^(b+c)*b^(c+a)*c^(a+b)
已知 a,b,c是不全相等的正数.求证2(aaa+bbb+ccc)>aa(b+c)+bb(a+c)+cc(a+b)
已知a,b,c是不全相等的正数求证(a+b)(b+c)(c+a)>8abc