10、设函数f(x)=2x-cosx,{an}是公差为π/8的等差数列,f(a1)+f(a2)+…+f(a5)=5π
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 15:40:50
10、设函数f(x)=2x-cosx,{an}是公差为π/8的等差数列,f(a1)+f(a2)+…+f(a5)=5π
10、设函数f(x)=2x-cosx,{an}是公差为π/8的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2-a1a5=______.
A 0 B 1/16*π2 C 1/8*π2 D 13/16*π2
选D
∵数列{an}是公差为π/8的等差数列,
且f(a1)+f(a2)+……+f(a5)=5π
2a1-cosa1+2a2-cosa2+2a3-cosa3+2a4-cosa4+2a5-cosa5=5π
∴2(a1+a2+……+a5)-(cosa1+cosa2+……+cosa5)=5π
∴(cosa1+cosa2+……+cosa5)=0
即2(a1+a2+……+a5)=2×5a3=5π,
a3=π/2,
a1=π/4
a5=3π/4
∴[f(a3)]²-a1a5
=(2a3-cosa3)²-a1a5
=(2*π/2-cosπ/2)²-π/4*3π/4
=π²-3π²/16
=13π²/16
我的疑问是这解题中的“∴(cosa1+cosa2+……+cosa5)=0“这步怎么来的?
10、设函数f(x)=2x-cosx,{an}是公差为π/8的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2-a1a5=______.
A 0 B 1/16*π2 C 1/8*π2 D 13/16*π2
选D
∵数列{an}是公差为π/8的等差数列,
且f(a1)+f(a2)+……+f(a5)=5π
2a1-cosa1+2a2-cosa2+2a3-cosa3+2a4-cosa4+2a5-cosa5=5π
∴2(a1+a2+……+a5)-(cosa1+cosa2+……+cosa5)=5π
∴(cosa1+cosa2+……+cosa5)=0
即2(a1+a2+……+a5)=2×5a3=5π,
a3=π/2,
a1=π/4
a5=3π/4
∴[f(a3)]²-a1a5
=(2a3-cosa3)²-a1a5
=(2*π/2-cosπ/2)²-π/4*3π/4
=π²-3π²/16
=13π²/16
我的疑问是这解题中的“∴(cosa1+cosa2+……+cosa5)=0“这步怎么来的?
f(x)=2x-cosx
所以f(a1)=2a1-cosa1
f(a2)=2a2-cosa2
.
整理得
因为f(a1)+f(a2)+……+f(a5)=5π
2(a1+a2+……+a5)-(cosa1+cosa2+……+cosa5)=5π
注意这里
因为a5=a1+4*π/8=a1+π/2
cosa1+cosa2+cosa3+cosa4+cosa5
=[cos(a3-π/4)+cos(a3-π/8)+cosa3+cos(a3+π/8)+cos(a3+π/4)
展开化简即可.
所以f(a1)=2a1-cosa1
f(a2)=2a2-cosa2
.
整理得
因为f(a1)+f(a2)+……+f(a5)=5π
2(a1+a2+……+a5)-(cosa1+cosa2+……+cosa5)=5π
注意这里
因为a5=a1+4*π/8=a1+π/2
cosa1+cosa2+cosa3+cosa4+cosa5
=[cos(a3-π/4)+cos(a3-π/8)+cosa3+cos(a3+π/8)+cos(a3+π/4)
展开化简即可.
设函数f(x)=2x-cosx,{An}是公差为π/8的等差数列,f(a1)+f(a2)+…f(a5)=5π,则[f(a
设函数f(x)=2x-cosx,an是公差为八分之pai的等差数列,f(a1)+f(a2)+…+f(a5)等于5pai,
设函数f(x)=2x-cosx,{an}是公差为π8
设函数f(x)=(x-3)3+x-1,{an}是公差不为0的等差数列,f(a1)+f(a2)+…+f(a7)=14,则a
已知{an}为公差是1的等差数列,函数f(x)=(x-a1)(x-a2).(x-an),则f'(a4)=__
已知f(x)=logaX a大于0 且a不等于1设f(a1),f(a2),f(an)是首项4公差2的等差数列
函数f(x)=x平方-2x-3,等差数列{an}中,a1=f(x-1),a2=-3/2,a3=f(x)
已知f(x)=(x-1)^2,数列{an}是公差为d的等差数列,{bn}是公比为q的等比数列,设a1=f(d-1)
已知函数f(x)=sinx+tanx,项数为27的等差数列{an}满足f(a1)+f(a2)+……+f(an)=0,问k
已知函数f(x)=2的x次方,等差数列{an}的公差为2,若f(a2+a4+a6+a8+a10)=4,求log2【f(a
等比数列{an}中,a1=2,a8=4,f(x)=x(x-a1)(x-a2)…(x-a8),f'(x)为函数f(x)的导
已知函数f(x)是R上的单调增函数且为奇函数,数列{an}是等差数列,a3>0,则f(a1)+f(a3)+f(a5)的值