正方形ABCD边长为4,P是对角线AC上的一个动点,E是CD的中点,连接PE、PD,则PE+PD的最小值是多少?
如图,正方形ABCD的边长为2,E是CD的中点,在对角线AC上有一点P,则PD+PE的最小值是______.
如图,点E在边长为4的正方形ABCD的边CD上,且DE=1,点P是对角线AC上一动点,则PD+PE的最小值为?
正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为
正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值多
正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,
已知正方形ABCD的边长为8,E是CD边上的地点,DE=2,P是AC边上的动点,则PD+PE的最小值是?
如图 边长为1的正方形ABCD中,P为对角线AC上任意一点,分别连接PB,PD,PE垂直PB,交CD于E.求证PE=PD
正方形ABCD.P为对角线AC上的点(不是中点)PE垂直AB.PF垂直BC.连接EF和PD.试说明PD=EF
如图所示,在正方形ABCD中,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,若PD+PE的最小值
如图,在菱形ABCD中,AB=2,∠BAD=60°,E是AD的中点,P是对角线AC上的一个动点,求PE+PD最小值.
已知正方形ABCD边长是8,E在CD上且ED=2,P是AC上任意一点,求:PD+PE的最小值?
正方形ABCD的面积为10,三角形ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最