两个积分的结果,算了很多遍都和答案不同.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 23:15:45
两个积分的结果,算了很多遍都和答案不同.
只要结果就可以了
只要结果就可以了
1、24∫(0~z/2) ydy ∫(y~z-y)(1-x)dx
=24∫(0~z/2) y{z-y-y-1/2*[(z-y)^2-y^2]}dy
=24∫(0~z/2) y{z-2y-1/2*(z^2-2yz)}dy
=24∫(0~z/2) (yz-2y^2-1/2*yz^2+y^2*z)dy
=24*[z/2*(z/2)^2-2/3*(z/2)^3-1/2*z^2*1/2*(z/2)^2+z/3*(z/2)^3]
=z^3*(1-z/2)
2、24[∫(0~z/2) (1-x)dx∫(0~x)ydy+ ∫(z/2~1)(1-x)dx∫(0~z-x)ydy]
=24[∫(0~z/2) (1-x)*x^2/2*dx+ ∫(z/2~1)(1-x)*(z-x)^2/2*dx] 令x-z=t
=24[∫(0~z/2) (x^2/2-x^3/2)dx+ ∫(1-z~-z/2)(t+z-1)*t^2/2*dt]
=24{(z/2)^3/6-(z/2)^4/8+ ∫(1-z~-z/2)[t^3/2+(z-1)/2*t^2]dt}
=z^3/2-3z^4/16+24 *{1/8*[(-z/2)^4-(1-z)^4]+(z-1)/2*1/3*[(-z/2)^3-(1-z)^3}
=z^3/2-3z^4/16+3z^4/16-3(1-z)^4+4(z-1)*[-z^3/8-(1-z)^3]
=z^3/2-3(1-z)^4-(z-1)z^3/2+4(z-1)^4
=z^3/2+(z-1)^4-(z-1)z^3/2
=z^3*(1-z/2)+(z-1)^4
再问: 矿大的??缘分啊...等会我看看我算出来的结果是什么~
再答: 嗯,我是矿大机电学院的
=24∫(0~z/2) y{z-y-y-1/2*[(z-y)^2-y^2]}dy
=24∫(0~z/2) y{z-2y-1/2*(z^2-2yz)}dy
=24∫(0~z/2) (yz-2y^2-1/2*yz^2+y^2*z)dy
=24*[z/2*(z/2)^2-2/3*(z/2)^3-1/2*z^2*1/2*(z/2)^2+z/3*(z/2)^3]
=z^3*(1-z/2)
2、24[∫(0~z/2) (1-x)dx∫(0~x)ydy+ ∫(z/2~1)(1-x)dx∫(0~z-x)ydy]
=24[∫(0~z/2) (1-x)*x^2/2*dx+ ∫(z/2~1)(1-x)*(z-x)^2/2*dx] 令x-z=t
=24[∫(0~z/2) (x^2/2-x^3/2)dx+ ∫(1-z~-z/2)(t+z-1)*t^2/2*dt]
=24{(z/2)^3/6-(z/2)^4/8+ ∫(1-z~-z/2)[t^3/2+(z-1)/2*t^2]dt}
=z^3/2-3z^4/16+24 *{1/8*[(-z/2)^4-(1-z)^4]+(z-1)/2*1/3*[(-z/2)^3-(1-z)^3}
=z^3/2-3z^4/16+3z^4/16-3(1-z)^4+4(z-1)*[-z^3/8-(1-z)^3]
=z^3/2-3(1-z)^4-(z-1)z^3/2+4(z-1)^4
=z^3/2+(z-1)^4-(z-1)z^3/2
=z^3*(1-z/2)+(z-1)^4
再问: 矿大的??缘分啊...等会我看看我算出来的结果是什么~
再答: 嗯,我是矿大机电学院的
一个计算的题目 算了很多遍 每次都和答案不一样
我算了很多遍都跟答案不一样!
初一的去括号解方程,我算了好多遍,结果也有很多,到底是多少?
算了好几遍,都错的
一道数学题,我算了B遍都是两个答案,老师讲的是一个.
初一的一题计算,我算了好几遍,答案都不一样,
一道我算了10遍答案都不一样的数学题(七年级)
高数对面积曲线的积分见图算了很多遍,但是用这个办法算出来的不对,我也不知道那个对的,
求这道题的计算过程注意实际上我,算了很多遍觉得自己算的正确了,可是与答案不相同.
两个数相乘,其中一个数是7.8,明明估成7和8,各算了一次,两次结果的差为3.5原来的答案是()
两个数相乘,其中一个数是7.8,明明估成7和8分别算了两次,两次结果的差为3.5,原来的答案是多少?
请问第二问得多少?我算了好多遍答案都不一样