作业帮 > 数学 > 作业

数列an有a1=1,n>=2时,3tSn-(2t+3)S(n-1)=3t(常数a>0),问:求an的通项公式

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 19:22:34
数列an有a1=1,n>=2时,3tSn-(2t+3)S(n-1)=3t(常数a>0),问:求an的通项公式
问题二若a(n+1)=an·f(t),bn=f(1/(n-1),求bn
问题三求和b1b2-b2b3+b3b4-b4b5+…-b2n·b(2n+1)
数列an有a1=1,n>=2时,3tSn-(2t+3)S(n-1)=3t(常数a>0),问:求an的通项公式
a(n+1)-an=n*2^n
所以an-a(n-1)=(n-1)*2^(n-1)
a(n-1)-a(n-2)=(n-2)*2^(n-2)
……
a2-a1=1*2^1
相加
an-a1=(n-1)*2^(n-1)+(n-2)*2^(n-2)+……+1*2^1
令s=(n-1)*2^(n-1)+(n-2)*2^(n-2)+……+2*2^2+1*2^1
则2s=(n-1)*2^n+(n-2)*2^(n-1)+……+1*2^2
s=2s-s
=(n-1)*2^n+(n-2-n+1)*2^(n-1)+……+(1-2)*2^2+1*2^1
=(n-1)*2^n-[2^(n-1)+……+2^2+2^1]
=(n-1)*2^n-2*[2^(n-1)-1]/(2-1)
=(n-1)*2^n-2^n+2
=(n-2)*2^n+2
所以an-a1=(n-2)*2^n+2
an=a1+(n-2)*2^n+2=(n-2)*2^n+3