已知命题P:对任意x∈[1,2],x^2-a≥0,与命题q:存在x∈R,x0^2+2ax0+2=0,若命题“p且q”是真
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 08:58:35
已知命题P:对任意x∈[1,2],x^2-a≥0,与命题q:存在x∈R,x0^2+2ax0+2=0,若命题“p且q”是真命题,
求实数a的取值范围、
求实数a的取值范围、
命题“p且q”是真命题,即P为真命题,Q为真命题.
x²-a≥0
x²≥a
x∈[1,2] 则x²∈[1,4],要不等式恒成立,a≤1
x0²+2ax0+2=0,方程有实根,判别式△≥0
(2a)²-4×1×2≥0
a²≥2
a≥√2或a≤-√2
综上,得a≤-√2
再问: 可是正确答案是a=1 or a≤-2
再答: a=1时,x0^2+2x0+2=(x0+1)^2+1恒>0,方程无解。 要不就是你题抄错了。
x²-a≥0
x²≥a
x∈[1,2] 则x²∈[1,4],要不等式恒成立,a≤1
x0²+2ax0+2=0,方程有实根,判别式△≥0
(2a)²-4×1×2≥0
a²≥2
a≥√2或a≤-√2
综上,得a≤-√2
再问: 可是正确答案是a=1 or a≤-2
再答: a=1时,x0^2+2x0+2=(x0+1)^2+1恒>0,方程无解。 要不就是你题抄错了。
已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x0∈R,x02+2ax0+2-a=0”,若命题“p且q”是
已知命题p:“对任意x∈[1,2],x2-a≥0”,命题q:“存在x∈R,x2+2ax+2-a=0”若命题“p且q”是真
已知命题p:“任意x∈[1,2],x2-a≥0”,命题q:“存在x∈r,x2+2ax+2-a= 0”.若命题“p且q”是
数学命题命题p任意x∈[1,2],x^2-a≥0”;命题q:“存在一个x∈R,x^2+2ax+2-a=0”.若命题“p且
已知命题p:任意x∈[1,2],x²-a≥0;命题q:存在x∈R,使x²+2ax+2-a=0
已知命题p:对任意实数x有2x^2-x+a>0恒成立,q:存在一个x有:x ^2+2ax+a=0;若命题p或q为真命题,
已知命题p:“对任意的x属于[1,2],都有x>=a",命题q:“存在x属于R,使得x+2ax+2-a=0成立”.若命题
已知命题p:所有x∈[1,2],1/2x^2-lnx-a≥0与命题q 存在x∈R ,x^2+2ax-8-6a=0都是真命
给定两个命题,p:对任意x都有x^2+ax+a>0恒成立.命题q:x^2-x+a=0有实数根.如果p或q为真命题.p且q
已知 p:对任意实数x,都有ax^2+zx+a大于0恒成立;q:5a-6大于等于a^2,若p且q是假命题,p或q是真命题
已知命题p:m∈R且m+1≤0,命题q:任意数x∈R,x^2+mx+1>0恒成立,若p∩q为假命题,则m的取值范围( )
已知命题P:对任意的X属于[1,2],X2-a大于等于0,命题q:存在X属于R,使X2+(a-1)X+1小于0,若P或q