n/1*2*3+(n-1)/2*3*4+…1/n*(n+1)(n+2)裂项求和
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 05:06:55
n/1*2*3+(n-1)/2*3*4+…1/n*(n+1)(n+2)裂项求和
通项为(n+1-k)/[k*(k+1)*(k+2)]
=(n+1)/[k*(k+1)*(k+2)]-1/[(k+1)*(k+2)]
=(n+1)/[2k*(k+1)]-(n+1)/[2(k+1)*(k+2)]-1/(k+1)+1/(k+2)
所以n/1*2*3+(n-1)/2*3*4+…1/n*(n+1)(n+2)
=(n+1)/[2*1*(1+1)]-(n+1)/[2(n+1)*(n+2)]-1/(1+1)+1/(n+2)
=(n-1)/4+1/[2(n+2)]
=(n+1)/[k*(k+1)*(k+2)]-1/[(k+1)*(k+2)]
=(n+1)/[2k*(k+1)]-(n+1)/[2(k+1)*(k+2)]-1/(k+1)+1/(k+2)
所以n/1*2*3+(n-1)/2*3*4+…1/n*(n+1)(n+2)
=(n+1)/[2*1*(1+1)]-(n+1)/[2(n+1)*(n+2)]-1/(1+1)+1/(n+2)
=(n-1)/4+1/[2(n+2)]
n(n+1)(n+2)数列求和
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
一道数列求和题1/2n+3/4n+5/8n+...+(2n-1)/n*2^n
各路大神请指教 级数求和 1/n(n+1)(n+2)(n+3).(n+k)
求和4^n+3×4^(n-1)+3^2×4(n-2)+……+3^(n-1)×4+3^n
求和:Sn=1*n+2*(n-1)+3*(n-2)+……+n*1
四个幂级数求和1/[(n^2-1)2^n],(-1)^n/(3n+1),(n+1)^2/n!,(-1)^n(n^2-n+
求和(1+2)+(3+4)+...+(2n-1+2^n)
1/2!+2/3!+3/4!+.+n/(n+1)!求和
求和sn=1×2×3+2×3×4+……+n(n+1)(n+2)
1*2*3+2*3*4+……+n(n+1)(n+2) 求和
求和:Sn=1*2*3+2*3*4+……+n(n+1)(n+2)