椭圆:x^2/(m+1)+y^2/m=1,两个长轴端点为A,B,P是椭圆上动点,且∠APB最大值为120度.请问怎么证明
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:33:21
椭圆:x^2/(m+1)+y^2/m=1,两个长轴端点为A,B,P是椭圆上动点,且∠APB最大值为120度.请问怎么证明以下问题
怎么证明P点在Y轴上?也就是为什么P点在Y轴上时,∠APB最大?
怎么证明P点在Y轴上?也就是为什么P点在Y轴上时,∠APB最大?
先给出一个直观理焦点显然在x轴上
显然P在x轴上方与下方情况一样(对称)
利用运动观点:让P从A运动到B,则∠APB的变化是从0增大再减小到0,由对称性,中间时最大,此时P在y轴上.
证明方法很多,
(1)把P的坐标用参数来表示即可(2)用余弦定理证明也可
(3)课本上有例题,A、B为椭圆顶点,则kAP·kBP=-m/m+1,即(记)tan∠PAB·tan∠PBA=k1·k2=m/m+1=定值
tan∠APB=-tan(∠PAB+∠PBA)=-(k1+k2)/(1-k1·k2),分子由基本不等式,可知,当k1=k2时∠APB最大,此时PA=PB,所以P在AB的中垂线上,即y轴上
显然P在x轴上方与下方情况一样(对称)
利用运动观点:让P从A运动到B,则∠APB的变化是从0增大再减小到0,由对称性,中间时最大,此时P在y轴上.
证明方法很多,
(1)把P的坐标用参数来表示即可(2)用余弦定理证明也可
(3)课本上有例题,A、B为椭圆顶点,则kAP·kBP=-m/m+1,即(记)tan∠PAB·tan∠PBA=k1·k2=m/m+1=定值
tan∠APB=-tan(∠PAB+∠PBA)=-(k1+k2)/(1-k1·k2),分子由基本不等式,可知,当k1=k2时∠APB最大,此时PA=PB,所以P在AB的中垂线上,即y轴上
已知椭圆x2a2+y2b2=1(a>b>0),M,N是椭圆长轴的两个端点,P是椭圆上除了长轴端点外的任意一点,且直线PM
已知点A ,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上,且在x轴上方,P
高中解析几何椭圆一题F1 F2是椭圆的x^2/a^2+y^2/b^2=1的两个焦点(a>b>0)P为椭圆上一动点,M为P
已知椭圆x^2/a^2+y^2/b^2=1,A,B是椭圆长轴的两个端点,p是椭圆上异于A,B上 任意一点,若PA,PB的
已知点A、B分别是椭圆X^2/36十y^2/20=1长轴的左右端点;点F是椭圆的右焦点,点P在椭圆上,且位于X轴上方PA
点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方PA垂直于
已知F1 F2为椭圆x^2/m+1+y^2/m=1的两个焦点 P为圆上的动点 且△F1PF2面积最大值为2 求椭圆的离心
椭圆x^2/4+y^2/3=1的长轴端点为M,N,不同于M.N的点P在此椭圆上,那么PM,PN的斜率之积为?
椭圆C:x^/a^+y^/b^=1的离心率为根号3/2,长轴端点与短轴端点的距离为根号5,(1)求椭圆C的方程(2)过P
已知椭圆x^2/a^2+y^2/b^2=1的离心率为2根号2/3,试求点p(0,a)与椭圆上动点M的距离最大值
已知椭圆x^2/a^2+y^2/b^2=1,A,B是椭圆短轴的两个端点,p是椭圆上异于A,B上 任意一点,若PA,PB的
已知F(c,0)为椭圆x^2/a^2+y^2/b^2=1的右焦点,F与椭圆上的点的距离的最大值为M,最小值为m则椭圆上与