2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1.x2=q,请根据
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 03:17:20
2012•内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1.x2=q,请根据以上结论,
(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;
(2)已知a、b满足a2-15a-5=0,b2-15b-5=0,求 ab+ba的值;
3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.
(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;
(2)已知a、b满足a2-15a-5=0,b2-15b-5=0,求 ab+ba的值;
3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.
1)方程x^2+mx+n=0(n≠0)的两根为x1.x2,
且x1+x2=-m,x1*x2=n
新方程的两根为y1,y2,
y1+y2=1/x1+1/x2=(x1+x2)/x1*x2=-m/n
y1*y2=1/x1*(1/x2)=1/x1*x2=1/n
所以新方程为y^2+(m/n)y+1/n=0,
整理:ny^2+my+1=0
2)依题意,a,b是方程x^2-15x-5=0的两根,
所以a+b=15,ab=-5
所以 a^2+b^2
=(a+b)^2-2ab
=15^2-2*(-5)
=225+10
=235
所以a/b+b/a
=a^2/ab+b^2/ab
=(a^2+b^2)/ab
=235/15
=47/3
3)整理,a+b=-c,ab=16/c
所以a,b是方程x^2+cx+16/c=0的两根,
所以判别式=△
=b^2-4ac
=c^2-4*(16/c)≥0
即c^2≥64/c
因为c>0
所以c^3≥64
所以正数c的最小值为4
希望可以帮到你^__^
且x1+x2=-m,x1*x2=n
新方程的两根为y1,y2,
y1+y2=1/x1+1/x2=(x1+x2)/x1*x2=-m/n
y1*y2=1/x1*(1/x2)=1/x1*x2=1/n
所以新方程为y^2+(m/n)y+1/n=0,
整理:ny^2+my+1=0
2)依题意,a,b是方程x^2-15x-5=0的两根,
所以a+b=15,ab=-5
所以 a^2+b^2
=(a+b)^2-2ab
=15^2-2*(-5)
=225+10
=235
所以a/b+b/a
=a^2/ab+b^2/ab
=(a^2+b^2)/ab
=235/15
=47/3
3)整理,a+b=-c,ab=16/c
所以a,b是方程x^2+cx+16/c=0的两根,
所以判别式=△
=b^2-4ac
=c^2-4*(16/c)≥0
即c^2≥64/c
因为c>0
所以c^3≥64
所以正数c的最小值为4
希望可以帮到你^__^
如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1.x2=q,请根据以上结论,
如果方程x^2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q,请根据以上结论,
如果方程x²+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q.请根据以上结
如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1.x2=q,
如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1•x2=q,请根据以上结论,解决下列问题:
如果方程x^2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q.请根据以上结论,解决下列问题:
设X1,X2,X2是方程X3+PX+q=0的3个根,计算行列式 X1 X2 X3 X3 X1 X2 X2 X3 X1
x1,x2,x3是方程x^3+px+q=0的根,求三阶行列式x1 x2 x3,x3 x1 x2,x2 x3 x1的值
如果方程x平方+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1x2=q,
方程x²+px+q=0,根是x1 x2,如何证明x1+x2=-p,X1×X2=q
我们知道,如果x1,x2的方程x^2 px q=0为的两根,那么x1 x2=-p
若方程x^2-px+q=0(p、q属于实数)的两根是X1,X2,则以—X1,—X2为根的二次方程是?