作业帮 > 数学 > 作业

已知数列{an}=2^n,若bn=an*log1/2(an),Sn=b1+b2+...+bn,求使sn+n*2^(n+1

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 10:57:36
已知数列{an}=2^n,若bn=an*log1/2(an),Sn=b1+b2+...+bn,求使sn+n*2^(n+1)=30成立的正整数n等于
A.4 B.5 C.6 D 7
已知数列{an}=2^n,若bn=an*log1/2(an),Sn=b1+b2+...+bn,求使sn+n*2^(n+1
a(n)=2^n,
b(n)=-a(n)ln[a(n)]/ln2=-2^nln[2^n]/ln2=-n2^n,
S(n) = b(1)+b(2)+...+b(n)=-1*2 -2*2^2 - 3*2^3 - ...- (n-1)*2^(n-1) - n*2^n,
2S(n) = -1*2^2 - 2*2^3 - 3*2^4 -...- (n-1)*2^n - n*2^(n+1),
S(n)=2S(n)-S(n)=2 + 2^2 + 2^3 + ...+ 2^n - n*2^(n+1)
=2[2^n-1]/(2-1) - n*2^(n+1),
= 2[2^n-1] - n*2^(n+1),
S(n) + n*2^(n+1) = 2[2^n-1]=30
n=4