数列前n项和为Sn a1=2 点(Sn+1,Sn)在直线x/(n+1)-y/n=1上 n是正整数
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 12:13:42
数列前n项和为Sn a1=2 点(Sn+1,Sn)在直线x/(n+1)-y/n=1上 n是正整数
1.求an通项
2.设Tn=(Sn/S(n+1))+(S(n+1))/Sn-2 证明4/3≤T1+T2+T3+…+Tn
1.求an通项
2.设Tn=(Sn/S(n+1))+(S(n+1))/Sn-2 证明4/3≤T1+T2+T3+…+Tn
S(n+1)/(n+1) - S(n)/n = 1,
S(1) = a(1) = 2.
设b(n) = S(n)/n,n = 1,2,...
则 b(n+1) - b(n) = 1.
{b(n)}是首项为b(1) = S(1)/1 = 2,公差为1的等差数列.
b(n) = 2 + (n-1) = n+1.
S(n)/n = n+1,
S(n) = n(n+1).n = 1,2,...
a(1) = 2,
n >= 2时,
a(n) = S(n) - S(n-1) = n(n+1) - (n-1)n = 2n,
a(n) = 2n,n = 1,2,...
T(n) = S(n)/S(n+1) + S(n+1)/S(n) - 2 = n(n+1)/[(n+1)(n+2)] + (n+1)(n+2)/[n(n+1)] - 2
= n/(n+2) + (n+2)/n - 2
= 1 - 2/(n+2) + 1 + 2/n - 2
= 2/n - 2/(n+2)
G(n) = T(1) + T(2) + T(3) + ...+ T(n-2) + T(n-1) + T(n)
= 2/1 - 2/3 + 2/2 - 2/4 + 2/3 - 2/5 + ...+ 2/(n-2) - 2/n + 2/(n-1) - 2/(n+1) + 2/n - 2/(n+2)
= 2/1 + 2/2 - 2/(n+1) - 2/(n+2)
= 3 - 2[1/(n+1) + 1/(n+2)]
所以
G(n) = 3 - 2[1/(n+1) + 1/(n+2)]< 3,
G(n) = 3 - 2[1/(n+1) + 1/(n+2)] >= 3 - 2[1/2 + 1/3] = 3 - 1 - 2/3 = 4/3.
综合,有
4/3
S(1) = a(1) = 2.
设b(n) = S(n)/n,n = 1,2,...
则 b(n+1) - b(n) = 1.
{b(n)}是首项为b(1) = S(1)/1 = 2,公差为1的等差数列.
b(n) = 2 + (n-1) = n+1.
S(n)/n = n+1,
S(n) = n(n+1).n = 1,2,...
a(1) = 2,
n >= 2时,
a(n) = S(n) - S(n-1) = n(n+1) - (n-1)n = 2n,
a(n) = 2n,n = 1,2,...
T(n) = S(n)/S(n+1) + S(n+1)/S(n) - 2 = n(n+1)/[(n+1)(n+2)] + (n+1)(n+2)/[n(n+1)] - 2
= n/(n+2) + (n+2)/n - 2
= 1 - 2/(n+2) + 1 + 2/n - 2
= 2/n - 2/(n+2)
G(n) = T(1) + T(2) + T(3) + ...+ T(n-2) + T(n-1) + T(n)
= 2/1 - 2/3 + 2/2 - 2/4 + 2/3 - 2/5 + ...+ 2/(n-2) - 2/n + 2/(n-1) - 2/(n+1) + 2/n - 2/(n+2)
= 2/1 + 2/2 - 2/(n+1) - 2/(n+2)
= 3 - 2[1/(n+1) + 1/(n+2)]
所以
G(n) = 3 - 2[1/(n+1) + 1/(n+2)]< 3,
G(n) = 3 - 2[1/(n+1) + 1/(n+2)] >= 3 - 2[1/2 + 1/3] = 3 - 1 - 2/3 = 4/3.
综合,有
4/3
数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线Y=2X+1上,n∈N*
数列{an}的前n项和记为Sn,a1=t,点(Sn,a(n+1))(n+1为底数)在直线y=2x+1上,n∈N+
证明数列是等比数列数列前n项和为Sn,a1=1,a(n+1)=(n+2)Sn/n,求证Sn/n是等比数列,
数列{an}的前n项和为Sn(n属于N*),点(an,Sn)在直线y=2x-3n上.
等比数列试卷数列{a n}的前n项和记为Sn,a 1=t点(Sn,a n+1)在直线上y=2x+1上,n∈N+ (1)当
数列{an}的前n项和为Sn,a1=1,an+1=2Sn (n∈正整数)
设数列{an}的前n项和为Sn,若a1=1,a(n+1)=(n+2/n)Sn(n属于正整数),证明:数列{Sn/n}是等
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
设Sn是数列an的前n项和,点P(an,Sn)(n∈N+,n≥1)在直线y=2x-2上.
设数列{an}的前n项和为Sn,点(n,Sn/n),(n∈N*)均在函数y=3x-2的图像上
已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn
若数列{an}的前n项和Sn,a1=2,且对任意大于1的整数n,点(根号下Sn,根号下Sn-1)在直线x-y-根号2=0