设数列{an}的前n项和Sn,其中an≠0,a1=a(常数),且a1,an,Sn成等差数列
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 08:39:44
设数列{an}的前n项和Sn,其中an≠0,a1=a(常数),且a1,an,Sn成等差数列
求{an}通相公式
求{an}通相公式
a1,an,Sn成等差数列
即:2an=a1+Sn=a+Sn
又:an=Sn-S(n-1)
故:2Sn-2S(n-1)=a+Sn
Sn=2S(n-1)+a
即Sn+a=2[S(n-1)+a]
所以有:(Sn+a)/[S(n-1)+a]=2
即数列{Sn+a}是一个以S1+a=a1+a=2a为首项,公比是2的等比数列.
所以,Sn+a=2a*2^(n-1)
即Sn=a*2^n-a
n>=2时,an=Sn-S(n-1)=(a*2^n-a)-(a*2^(n-1)-a)=a*2^n-a*2^(n-1)=a*2^(n-1)
a1=a也符合,所以,通项是an=a*2^(n-1)
即:2an=a1+Sn=a+Sn
又:an=Sn-S(n-1)
故:2Sn-2S(n-1)=a+Sn
Sn=2S(n-1)+a
即Sn+a=2[S(n-1)+a]
所以有:(Sn+a)/[S(n-1)+a]=2
即数列{Sn+a}是一个以S1+a=a1+a=2a为首项,公比是2的等比数列.
所以,Sn+a=2a*2^(n-1)
即Sn=a*2^n-a
n>=2时,an=Sn-S(n-1)=(a*2^n-a)-(a*2^(n-1)-a)=a*2^n-a*2^(n-1)=a*2^(n-1)
a1=a也符合,所以,通项是an=a*2^(n-1)
设数列an的前n项和为Sn,其中an不等于0,a1=a(常数),且a1,an,Sn成等差数列 (1)求an的通项公式
设数列{an}的前n项和为Sn,其中an不等于0.a1为常数,且-a1,Sn,a(n+1)成等差数列,设Bn=1-Sn,
设数列{an}的前n项和为Sn,其中an不等于0,a1为常数,且一a1,Sn,an十1成...
设数列{an}的前n项和为Sn,其中an不等于0,a为常数,且-a1,sn,an+1成等差数列,求{an}的通项公式
设数列{an}的前n项和为Sn,其中an不等于0.a1为常数,且-a1,Sn,a(n+1)成等差数列,求{an}的通项公
1.设数列{an}的前n项和为Sn,其中an≠0,a1为常数,且-a1,Sn,an+1(n+1是a的下标啊,我打不出来)
设数列an的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n,且a1,a2,a3成等差数列
设数列{an}的前n项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数列
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
设数列{an}的前n项和为Sn,已知a1=2,且a1、Sn+1、4Sn成等差数列,(1)求{an}的通项公式
设数列[an}的前n项和为Sn,a1=a ,a2=p(p>0),Sn=n(an-a1)/2
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,