线性代数,如图,图中红笔画出的2个问题!第一个为什么算出来的特征向量线性无关,第二个为什么有2个解就是秩为1?
线性代数问题n阶矩阵A 有k个线性无关的特征向量 则Ax=0的基础解系有k个向量吗?为什么?
线性代数:矩阵A有3个线性无关的特征向量,λ=2是A的二重特征值,则λ=2有两个线性无关的特征向量.
关于线性代数的问题:若任一n维非零向量都是n阶矩阵A的特征向量,为什么A就有n个线性无关的特征向量呢?求亲们解释.
线性代数:如果一个3X3矩阵A有3个线性无关的特征向量,它的特征值是1,1,2,为什么他的r(E-A)=1?
为什么任一n维非零向量都是A的特征向量 A就有n个线性无关的特征向量
线性代数的小问题.三阶矩阵A,特征值为-1,1,2,特征向量有3个,问R(A).为什么秩是3呢?
为什么不同特征值对应的特征向量一定线性无关?还有怎么判断一个n阶矩阵有n个线性无关的特征向量?
关于线性代数的问题: 若一个矩阵A有n个线性无关的特征向量,跟矩阵的秩有什么关系呀?
关于线性代数的小问题若n阶矩阵A有n个线性无关的特征向量,那么A的秩是n吗
n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量,但同一特征值所对应的特征向量就是无穷个,
线性代数问题设A=(aij)n*n的秩为r,则在A的n个行向量中(A)A.必有r个线性无关。为什么?设A是n阶非零方阵,
线性代数问题 一个矩阵若可对角化 那么 它的一个特征值若为k重特征根 则对应k个线性无关的特征向量