作业帮 > 数学 > 作业

在Rt三角形中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 23:29:47
在Rt三角形中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm
E为AB上一点使△CDE的周长最小△CDE的周长是__
在Rt三角形中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm
∵∠A=30°,∴∠ABC=60°
∴∠ABD=∠CBD=30°
∴DA=DB=2DC=10
过D点作AB的对称点F点,连接CF交AB于E点,
这时候的E点使△CDE的周长最小,
证明:连接ED,
由对称性得:EF=ED,
∴EC+ED=EC+EF=CF﹙两点之间,线段最短﹚
设FD与AB相交于G点,
则∠AGD=90°,∠FDA=60°
∴FG=DG=½AD=5,
∴FD=10,
过C点作FD的延长线的垂线,垂足为H点,
则∠HCD=30°
∴DH=5/2
∴由勾股定理得:CH=5√3/2
∴FC²=FH²+CH²
=﹙25/2﹚²+﹙5√3/2﹚²
=5²×7
∴FC=5√7
∴△CDE的最小值周长=FC+CD=5√7+5