已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 15:01:21
已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.
(1)若∠APB=60°,试求点P的坐标;
(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=
(1)若∠APB=60°,试求点P的坐标;
(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=
2 |
设P(2m,m),由题可知MP=2,所以(2m)2+(m-2)2=4,
解之得:m=0或m=
4
5,
故所求点P的坐标为P(0,0)或P(
8
5,
4
5).
(2)设直线CD的方程为:y-1=k(x-2),易知k存在,
由题知圆心M到直线CD的距离为
2
2,所以
2
2=
|−2k−1|
1+k2,
解得,k=-1或k=-
1
7,故所求直线CD的方程为:x+y-3=0或x+7y-9=0.
(3)设P(2m,m),MP的中点Q(m,
m
2+1),
因为PA是圆M的切线,所以经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,
故其方程为:(x-m)2+(y-
m
2-1)2=m2+(
m
2-1)2,
化简得:x2+y2-2y-m(2x+y-2)=0,此式是关于m的恒等式,
故x2+y2-2y=0且(2x+y-2)=0,
解得
x=0
y=2或
x=
4
5
y=
2
5
所以经过A,P,M三点的圆必过定点(0,2)或(
4
5,
2
5).
解之得:m=0或m=
4
5,
故所求点P的坐标为P(0,0)或P(
8
5,
4
5).
(2)设直线CD的方程为:y-1=k(x-2),易知k存在,
由题知圆心M到直线CD的距离为
2
2,所以
2
2=
|−2k−1|
1+k2,
解得,k=-1或k=-
1
7,故所求直线CD的方程为:x+y-3=0或x+7y-9=0.
(3)设P(2m,m),MP的中点Q(m,
m
2+1),
因为PA是圆M的切线,所以经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,
故其方程为:(x-m)2+(y-
m
2-1)2=m2+(
m
2-1)2,
化简得:x2+y2-2y-m(2x+y-2)=0,此式是关于m的恒等式,
故x2+y2-2y=0且(2x+y-2)=0,
解得
x=0
y=2或
x=
4
5
y=
2
5
所以经过A,P,M三点的圆必过定点(0,2)或(
4
5,
2
5).
已知圆M:x2+(y-4)2=4,直线l的方程为x-2y=0,点P是直线l上一动点,过点P作圆的切线PA、PB,切点为A
已知圆M的方程为x^2+(y-2)^2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切
已知圆M:x^2+(y-4)^2=4,直线l的方程为x-2y=0,点P是直线l上一动点,过点P作圆的切线PA,PB,切点
已知圆M:X2+(Y-2)2=1,直线L:X-2Y=0,点P在直线上,过点P作圆M的切线PA、PB,切点为A
设P是直线l:2x+y+9=0上的任一点,过点P作圆x2+y2=9的两条切线PA、PB,切点分别为A、B,则直线AB恒过
已知圆M的方程为x²+(y-4)²=1,直线l的方程为2x-y=0,点P在直线l上,过点P作圆M的切
已知圆x2+y2=1,点P在直线l:2x+y-3=0上,过点P作圆O的两条切线,A.B为两切点.点M为直线y=x与直线L
如图,设抛物线方程为x2=2py(p>0),M为直线l:y=-2p上任意一点,过M引抛物线的切线,切点分别为A、B.
已知圆O:x2+y2=9,过圆外一点P作圆的切线PA,PB(A,B为切点),当点P在直线2x-y+10=0上运动时,则四
已知圆M过三点(1,2)(2,1)(-√3/2,3/2)直线l的方程为x-2y=0点P在直线l上过点P作圆M的切线PA切
已知抛物线C:x^2=4y,直线l:y=-1,PA、PB是曲线C的两切线,切点分别为A、B,若P在l上,证明PA⊥PB
已知圆x2+y2=1,点P在直线l:2x+y-3=0上,过点P作圆O的两条切线,A.B为两切点.求向量PA乘向量PB的最