在△ABC中,AB=AC.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 11:39:03
在△ABC中,AB=AC.
(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=______
(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=______
(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:______
(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.
(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=______
(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=______
(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:______
(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.
(1)∵在△ABC中,AB=AC,AD是BC上的高,
∴∠BAD=∠CAD,
∵∠BAD=30°,
∴∠BAD=∠CAD=30°,
∵AD=AE,
∴∠ADE=∠AED=75°,
∴∠EDC=15°.
(2)∵在△ABC中,AB=AC,AD是BC上的高,
∴∠BAD=∠CAD,
∵∠BAD=40°,
∴∠BAD=∠CAD=40°,
∵AD=AE,
∴∠ADE=∠AED=70°,
∴∠EDC=20°.
(3)∠BAD=2∠EDC(或∠EDC=
1
2∠BAD)
(4)仍成立,理由如下
∵AD=AE,∴∠ADE=∠AED,
∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC
=2∠EDC+∠C
又∵AB=AC,
∴∠B=∠C
∴∠BAD=2∠EDC.
故分别填15°,20°,∠EDC=
1
2∠BAD
∴∠BAD=∠CAD,
∵∠BAD=30°,
∴∠BAD=∠CAD=30°,
∵AD=AE,
∴∠ADE=∠AED=75°,
∴∠EDC=15°.
(2)∵在△ABC中,AB=AC,AD是BC上的高,
∴∠BAD=∠CAD,
∵∠BAD=40°,
∴∠BAD=∠CAD=40°,
∵AD=AE,
∴∠ADE=∠AED=70°,
∴∠EDC=20°.
(3)∠BAD=2∠EDC(或∠EDC=
1
2∠BAD)
(4)仍成立,理由如下
∵AD=AE,∴∠ADE=∠AED,
∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC
=2∠EDC+∠C
又∵AB=AC,
∴∠B=∠C
∴∠BAD=2∠EDC.
故分别填15°,20°,∠EDC=
1
2∠BAD
在三角形ABC中,AB=AC,
在△ABC中,AB=2,AC=2
在△ABC中AB=15 AC=13
在△ABC中,AB=2,AC=6
如图.在△ABC中,AB=AC,
△ABC中,AB=AC,
已知:如图,在△ABC中,AB=AC=9,BC=6.
如图,在△ABC中,AB=AC,AD平分∠BAC.
如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB.
在△ABC中,已知AB•AC=-2,|AB|•|AC|=4,则△ABC的面积为 ___ .
在Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,EF∥AC.求证:AB=BF.
如图,在△ABC中,AB=AC,过腰AB的中点D作AB的垂线,交另一腰AC于E,连接BE.