如图,抛物线y=ax2+bx+3与y轴交于点C,与x轴交于A、B两点,tan∠OCA=13,S△ABC=6.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 10:25:17
如图,抛物线y=ax2+bx+3与y轴交于点C,与x轴交于A、B两点,tan∠OCA=
1 |
3 |
(1)∵y=ax2+bx+3,
∴C(0,3),(1分)
又∵tan∠OCA=
1
3,
∴A(1,0),(1分)
又∵S△ABC=6,
∴
1
2×3×AB=6,
∴AB=4,(1分)
∴B(-3,0).(1分)
(2)把A(1,0)、B(-3,0)代入y=ax2+bx+3,
得:
0=a+b+3
0=9a−3b+3,(1分)
∴a=-1,b=-2,
∴y=-x2-2x+3,(2分)
∵y=-(x+1)2+4,
∴顶点坐标(-1,4).(1分)
(3)①AC为平行四边形的一边时,
E1(-1,0),(1分)
E2(-2-
7,0),(1分)
E3(-2+
7,0);(1分)
②AC为平行四边形的对角线时,
E4(3,0).(1分)
∴C(0,3),(1分)
又∵tan∠OCA=
1
3,
∴A(1,0),(1分)
又∵S△ABC=6,
∴
1
2×3×AB=6,
∴AB=4,(1分)
∴B(-3,0).(1分)
(2)把A(1,0)、B(-3,0)代入y=ax2+bx+3,
得:
0=a+b+3
0=9a−3b+3,(1分)
∴a=-1,b=-2,
∴y=-x2-2x+3,(2分)
∵y=-(x+1)2+4,
∴顶点坐标(-1,4).(1分)
(3)①AC为平行四边形的一边时,
E1(-1,0),(1分)
E2(-2-
7,0),(1分)
E3(-2+
7,0);(1分)
②AC为平行四边形的对角线时,
E4(3,0).(1分)
抛物线y=ax²+bx+3与y轴交于点C,与x轴交于A,B两点,tan∠OCA=1/3,S△ABC=6.
3、如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴交于C点.△ABC为直角三角形.
如图,抛物线y=ax2+bx-3与x轴交于A(-1,0)、B两点,与y轴交于点C,S△ABC=6 (1)求抛物线解析式
如图,抛物线y=ax2+bx-3与x轴交于A(-1,0)、B两点,与y轴交于点C,S△ABC=6
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,
如图抛物线y=ax2+bx+1与x轴交于两点A(-1,0)B(1,0),与y轴交于点C.
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6
如图,顶点为D的抛物线y=x平方+bx-3与x轴交于A 、B两点,与y轴交于点C,连结BC.已知tan∠ABC=1
如图,已知抛物线y=ax2+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且点C、D是抛物线上的一对对称点.
如图1,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).
如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C