多元函数极值的一道题试确定常数u,v,使得∫[f(x)-(u+vx)]^2dx在[0,1]上为最小.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 23:21:55
多元函数极值的一道题
试确定常数u,v,使得∫[f(x)-(u+vx)]^2dx在[0,1]上为最小.
试确定常数u,v,使得∫[f(x)-(u+vx)]^2dx在[0,1]上为最小.
相当于用一条直线去近似代表f(x)
我们要找一个最优的直线
这就是最小二乘法,自己wiki一下.
然后发现
F(u,v)
=∫[f(x)-(u+vx)]^2dx
=∫[f(x)f(x)-2(u+vx)f(x)+(uu+vvxx+2uvx)]dx
=∫f(x)f(x)dx+2u∫f(x)dx+2v∫xf(x)dx+uu+(vv/3)+uv
0=dF/du=2∫f(x)dx+2u+v
0=dF/dv=2∫xf(x)dx+(2/3)v+u
0=2∫f(x)dx+2u+v
0=2∫xf(x)dx+(2/3)v+u
2元一次方程,你自己解决吧
我们要找一个最优的直线
这就是最小二乘法,自己wiki一下.
然后发现
F(u,v)
=∫[f(x)-(u+vx)]^2dx
=∫[f(x)f(x)-2(u+vx)f(x)+(uu+vvxx+2uvx)]dx
=∫f(x)f(x)dx+2u∫f(x)dx+2v∫xf(x)dx+uu+(vv/3)+uv
0=dF/du=2∫f(x)dx+2u+v
0=dF/dv=2∫xf(x)dx+(2/3)v+u
0=2∫f(x)dx+2u+v
0=2∫xf(x)dx+(2/3)v+u
2元一次方程,你自己解决吧
几何概率问题 若在区间(0,1)上随机地取两个数u,v,则关于x的一元二次方程x^2-2vx+u=
关于偏导数的一道题设函数z=f(u),其中u由方程u=φ(u)+∫ (上x下y) p(t)dt 确定为x,y的函数,且f
多元函数微积分设f(u,v)为可微分足够次的函数,试按r的方幂将函数 F(r)=(1/2π)∫(0,2π) f(x+r*
多元函数微分 隐函数 函数z=z(x,u)由方程组x=f(u,v),y=g(u,v),z=h(u,v)所确定,求z对x的
多元复合函数求导类.设函数z具有连续二阶偏导数,试求常数a,使得变换u=x-2y,v=x+ay可以把方程6Zxx+Zxy
隐函数的偏导数书本上有这样一道题:对于方程组:x = u^2 + uv - v2;y = u - v + 1;求uy(u
多元函数积分学的题设f(x,y)连续,且f(x,y)=xy+∫∫(D)f(u,v)dudv,其中D是由y=0,y=x^2
数学概率题在区间(0,1)上随机取v.x两个数,则关于X的方程X*X-VX+U=0有实根的概率?过程多谢给位指点,可是答
多元函数偏导难题u=f(ux,v+y);v=g(u-x,v^2y)...f,g 可微,求u关于x的偏导及v关于x的偏导
设F为三元可微函数,u=u(x,y,z)是由方程F(u^2-x^2,u^2-y^2,u^2-z^2)=0确定的隐函数,求
已知x∈R,ω>0,u=(sinωx,sin(ωx−π2)),v=(1,3),函数f(x)=1+u•v•sinωx的最小
微积分证明题目x证明关于区间(-无穷,+无穷)上连续函数y=U(x), 函数V(x)=∫ U(x)dx 0-无穷V(x)