在△ABC中(b+a)/a=SinB/(SinB-SinA)三角形形状计算
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 10:18:20
在△ABC中(b+a)/a=SinB/(SinB-SinA)三角形形状计算
在△ABC中(b+a)/a=SinB/(SinB-SinA)且Cos2C+CosC=1-Cos(A-B),试判断△ABC的形状,
在△ABC中(b+a)/a=SinB/(SinB-SinA)且Cos2C+CosC=1-Cos(A-B),试判断△ABC的形状,
(b+a)/a=sinB/(sinB-sinA)
(sinB+sinA)/sinA = sinB/(sinB-sinA)
(sinB+sinA)(sinB-sinA) = sinAsinB .(1)
cos2C+cosC = 1-cos(A-B)
1-2sin^2C + cos(180°-A-B) = 1-cos(A-B)
1-2sin^2C - cos(A+B) = 1-cos(A-B)
cos(A-B) - cos(A+B) = 2sin^2C
(cosAcosB+sinAsinB) - (cosAcosB+sinAsinB) = 2sin^2C
sinAsinB = sin^2C .(2)
根据(1)、(2):
(sinB+sinA)(sinB-sinA) = sin^2C
sin^2B = sin^2A+sin^2C,等效于b^2=a^2+c^2
直角三角形
(sinB+sinA)/sinA = sinB/(sinB-sinA)
(sinB+sinA)(sinB-sinA) = sinAsinB .(1)
cos2C+cosC = 1-cos(A-B)
1-2sin^2C + cos(180°-A-B) = 1-cos(A-B)
1-2sin^2C - cos(A+B) = 1-cos(A-B)
cos(A-B) - cos(A+B) = 2sin^2C
(cosAcosB+sinAsinB) - (cosAcosB+sinAsinB) = 2sin^2C
sinAsinB = sin^2C .(2)
根据(1)、(2):
(sinB+sinA)(sinB-sinA) = sin^2C
sin^2B = sin^2A+sin^2C,等效于b^2=a^2+c^2
直角三角形
在三角形ABC中,若a/sinB=b/sinC=c/sinA,则三角形ABC形状是什么?
在三角形ABC中,a/sinB=b/sinC=c/sinA,试判断三角形ABC形状
△abc中,已知(b-a)(sinA+sinB)=bsinA,且sinA/sinC=sinC/sinB,判断△abc形状
在三角形中,已知b+a/a=sinB/sinB-sinA,且sinasinb=sinc2,是判断三角形的形状
三角函数变换 (a-c*cosB)sinB=(b-c*cosA)sinA,在三角形中,三角形ABC的形状
已知在三角形ABC中a^2*SinB/CosB=b^2*SinA/CosA 试判断三角形形状
在三角形ABC中,已知(a+b)/a= sinB/(sinB -sinA),且cos(A-B)+cosC=1-cos2C
正弦定理..自学,在三角形ABC中,sinA/a=sinB/b=cosC/c,判断形状
在三角形ABC中,三边a,b,c成等差数列,sinA,sinB,sinC成等比数列,试判断三角形ABC形状.
判断三角形状的在三角形ABC中,已知(a+b)/a=sinB/(sinB-sinA),且cos(A-B)+cosC=1-
在三角形ABC中,证明2sinA*sinB=-[cos(A+B)-cos(A-B)]
在△ABC中,已知(sinA+sinB+sinC)(sinA+sinB-sinC)=3,a