来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 09:01:15
一道常微分方程习题求解
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式
f'(x)+f(x)-[∫(积分下限为0,上限为x)f(t)dt] /(x+1)=0,
(1) 求f'(x)
(2)证明:当x≥0时,有e^(-x)≤f(x)≤1
______________________________________
请把过程写得稍微详细点儿,第(1)问参考答案写的是f'(x)=-e^(-x)/(x+1)