作业帮 > 数学 > 作业

求In=∫dx/(cosx)^n(n属于N)的递推公式.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 10:28:27
求In=∫dx/(cosx)^n(n属于N)的递推公式.
求In=∫dx/(cosx)^n(n属于N)的递推公式.
L = ∫ dx/cos^n(x) dx = ∫ sec^n(x) dx
= ∫ sec^(n-2)(x) * sec²x dx
= ∫ sec^(n-2)(x) d(tanx)
= sec^(n-2)(x) * tanx - ∫ tanx d[sec^(n-2)(x)]
= sec^(n-1)(x) * 1/secx * sinxsecx - (n-2)∫ tanx * sec^(n-3)(x) * (secxtanx) dx
= sec^(n-1)(x) * sinx - (n-2)∫ tan²x * sec^(n-2)(x) dx
= sinx * sec^(n-1)(x) - (n-2)∫ sec^(n-2)(x) * (sec²x-1) dx
= sinx * sec^(n-1)(x) - (n-2)*L + (n-2)∫ sec^(n-2)(x) dx
[1+(n-2)]*L = sinx * sec^(n-1)(x) + (n-2)∫ sec^(n-2)(x) dx
L = [sinx * sec^(n-1)(x)]/(n-1) + (n-2)/(n-1) * ∫ sec^(n-2)(x) dx