作业帮 > 数学 > 作业

解下(a+2)(a-2)(a^4+4a^2+16) (x^2+2xy+y^2)(x^2-xy+y^2)^22 (x+y+

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 12:55:45
解下(a+2)(a-2)(a^4+4a^2+16) (x^2+2xy+y^2)(x^2-xy+y^2)^22 (x+y+z)(-x+y+z)(x-y+z)(x+y-z)
解下(a+2)(a-2)(a^4+4a^2+16) (x^2+2xy+y^2)(x^2-xy+y^2)^22 (x+y+
(a+2)(a-2)(a^4+4a^2+16)
=(a^2-4)(a^4+4a^2+16)
=a^6-4^3
=a^6-64
(x^2+2xy+y^2)(x^2-xy+y^2)^2
=(x+y)^2(x^2-xy+y^2)^2
=[(x+y)(x^2-xy+y^2)]^2
=(x^3+y^3)^2
=x^6+2x^3y^3+y^6
(x+y+z)(-x+y+z)(x-y+z)(x+y-z)
=[(x+y+z)(x+y-z)]*{[z+(x-y)][z-(x-y)]}
=[(x+y)^2-z^2][z^2-(x-y)^2]
=(x^2+2xy+y^2-z^2)[z^2-(x-y)^2]
=4*x^2*y^2-(x^2+y^2-z^2)^2
=2x^2y^2+2y^2z^2-y^4-x^4-z^4+2x^2z^2
=2x^2y^2+2y^2z^2+2x^2z^2-x^4-y^4-z^4