正方形ABCD中,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 16:44:29
正方形ABCD中,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α
用等式表示线段AP、AB、CP之间的数量关系.
用等式表示线段AP、AB、CP之间的数量关系.
tanα = DQ/AD = 1/2.
所以,tan(2α) = 2(1/2) / (1 - 1/4) = 4/3.
过P作平行于BC的线交AB于M,则tan(2α) = PM/AM.
再注意到PM = BC = AB,AM = AB - MB = AB - CP,于是AB / (AB-CP) = 4/3.
所以MB = CP = AB/4.
再根据AM = AB - MB = 3AB/4和PM = AB这两个条件可算出AP = 5AB/4.
---------------------------
[Solution 2]
延长AB至M,使得BM = CP.由于BM//CP,易知此时M是BC的中点,同时M也是MP的中点.
连结AM.
容易证明三角形ABM和三角形DAQ的全等,所以∠BAM = α.
又,根据P点的取法,∠BAP = 2α,这说明AM平分∠BAP.
注意到AM既是MP的中线,又是角平分线,所以可断定三角形MAP是等腰三角形,即AM = AP.
也即,AB + MP = AP,即AB + CP = AP.
这种解法得到的结论比第一种解法得到的结论弱,但是也满足题目“数量关系”的要求.
所以,tan(2α) = 2(1/2) / (1 - 1/4) = 4/3.
过P作平行于BC的线交AB于M,则tan(2α) = PM/AM.
再注意到PM = BC = AB,AM = AB - MB = AB - CP,于是AB / (AB-CP) = 4/3.
所以MB = CP = AB/4.
再根据AM = AB - MB = 3AB/4和PM = AB这两个条件可算出AP = 5AB/4.
---------------------------
[Solution 2]
延长AB至M,使得BM = CP.由于BM//CP,易知此时M是BC的中点,同时M也是MP的中点.
连结AM.
容易证明三角形ABM和三角形DAQ的全等,所以∠BAM = α.
又,根据P点的取法,∠BAP = 2α,这说明AM平分∠BAP.
注意到AM既是MP的中线,又是角平分线,所以可断定三角形MAP是等腰三角形,即AM = AP.
也即,AB + MP = AP,即AB + CP = AP.
这种解法得到的结论比第一种解法得到的结论弱,但是也满足题目“数量关系”的要求.
如图,已知正方形ABCD中,Q是CD的中点,P是CQ上一点,且AP=PC+CD,求证∠BAP=2∠QAD
已知正方形ABCD中,Q为CD的中点,P是CQ上一点,且∠BAP=2∠QAD.求证:AP=PC+CD!
Q是正方形ABCD的边CD的中点,作∠BAP=2∠QAP,P在CD上.求证:AP=CP+CB
如图,正方形ABCD中,P是CD中点,Q是BC边上一点,且AQ=DC+CQ,QP是否平分∠DAQ?说明理由.
如图所示,P是正方形ABCD的边CD上一点,∠BAP的角平分线交BC于Q,
如图,在正方形ABCD中,P为BC上一点,且BP=3PC,Q是CD的中点,求证,AQ平分∠PAD
如图,在正方形ABCD中,Q是CD的中点,P在BC上,且AP=PC+CD,求证:AQ平分∠DAP.
在正方形ABCD中,P,Q是AB,CD上两点 角PAQ=45度 角BAP=25度 求角AQP
如图,P是正方形ABCD的边CD上一点,∠BAP的平分线交B于Q,△ABQ旋转后得到△ADE,证明AP=DP+BQ.
1.在正方形ABCD中,P是BC上的一点,且BP=3PC,Q是CD的中点,则三角形ADQ相似QCP,为什么?
已知在正方形ABCD中,P是BC上的一点,且BP=3PC.Q是CD的中点.说明△ADQ∽△QCP
在正方形ABCD中,已知P是BC上的一点,且BP=3PC,Q是CD的中点,试说明AQ平分角DAP