其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1, -1,1)T
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 06:08:51
其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1, -1,1)T
由已知,A*α=λ0α
等式两边左乘A得 AA*α=λ0Aα
所以 |A|α=λ0Aα
所以 Aα=(|A|/λ0)α=(-1/λ0)α
得 (c-a+1,-5-b+3,c-a-1)^T = (1/λ0,1/λ0,-1/λ0)^T
解得 λ0=1,b=-3,a=c.
再由|A|=
a -1 a
5 -3 3
1-a 0 -a
= a-3 = -1.
所以 a=2.
综上有 a=2,b=-3,c=2,λ0=1.
等式两边左乘A得 AA*α=λ0Aα
所以 |A|α=λ0Aα
所以 Aα=(|A|/λ0)α=(-1/λ0)α
得 (c-a+1,-5-b+3,c-a-1)^T = (1/λ0,1/λ0,-1/λ0)^T
解得 λ0=1,b=-3,a=c.
再由|A|=
a -1 a
5 -3 3
1-a 0 -a
= a-3 = -1.
所以 a=2.
综上有 a=2,b=-3,c=2,λ0=1.
已知矩阵A=[a 2 1 b]有一个属于特征值1的特征向量a=[2,-1]
如果矩阵A有n个不同特征值,也就是特征多项式对一个特征值只有1次,那么A的伴随矩阵和A的特征向量之间
设3阶实对称矩阵A的特征值为-1,1,1,属于特征值-1的特征向量为a=[0 1 1]^t.
设A为可逆矩阵,λ为A的一个特征值,对应的特征向量为ζ,求:(1)A*的一个特征值及对应的特征向量
A的属于λ的特征向量为α,A与(P^-1AP)^T有相同的特征值λ,求后者的属于λ的特征向量?
求特征向量?A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,λ1=3的线性无关特征向量为(-1 0 1)^T
设A为可逆阵,λ为A的一个特征值,对应的特征向量为α,(1)求A*的一个特征值及其对应的特征向量;
已知三阶实对称矩阵A的特征值为a1=-1,a2=a3=1,(0 1 1)T是属于-1的特征向量,求A
设三阶矩阵A有一个特征值为1,且行列式A等于0及A的主对角线元素和为0,求A的另两个特征值!
设3阶实对称矩阵,A特征值λ1=-1,λ2=λ3=1,属于λ1=-1的特征向量为a1=(0,1,1)T,求A
n阶矩阵A的秩为n-1,求A的伴随矩阵的特征值与特征向量
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ