设数列{An}的通项公式为An=Pn+Q(n是正整数,P>0).数列{Bn}定义如下:对于正整数m,Bm是使得不等式An
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 08:22:03
设数列{An}的通项公式为An=Pn+Q(n是正整数,P>0).数列{Bn}定义如下:对于正整数m,Bm是使得不等式An大于等于m成立的所有n中的最小值.
(1)若P=2,Q=-1,求数列{Bm}的前2m项和公式;
(2)是否存在P和Q,使得Bm=3m+2(m是正整数)?如果存在,求P和Q的取值范围;如果不存在,请说明理由.
(1)若P=2,Q=-1,求数列{Bm}的前2m项和公式;
(2)是否存在P和Q,使得Bm=3m+2(m是正整数)?如果存在,求P和Q的取值范围;如果不存在,请说明理由.
(1)、由P =2,Q=-1得An=2n-1,对任意正整数m,An>=m即是2n-1>=m,解得n>=(m+1)/2,所以B_2k-1=k,B_2k=k+1.记Sm为Bm的前m项和,则S_2m=(B_1+B_3+…+B_2m-1)+(B2+B4+…+B2m)=(1+2+…+m)+(2+3+…+m+1)=2*(1+2+…+m)+m=m(m+1)+m=m(m+2); (2)、假设存在这样的P、Q,满足条件.那么对于Pn+Q>=m,(P>0),n>=(m-Q)/P,由题设及假设可得,[(m-Q)/P] 1=3m+2,即有3m
设数列{an}的前n项和为sn,若对于任意的正整数n都有sn=2an-3n.(1)设bn=an+3,证明:数列{bn}是
设数列﹛an﹜的前n项和为Sn,若对于任意的正整数n都有Sn=2an-3n.设bn=an+3,求证数列﹛bn﹜是等比数列
设数列{An}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-3n.设bn=an+3 (1)求证:数列{bn}是
已知数列an的通项公式是an=lg64-(n-1)lg2 求使得an小于等于0的最小正整数n的值
设数列an的前n项和为sn,对任意的正整数n,都有an=5sn+1成立,记bn=(4+an)/(1-an)(n是正整数)
已知数列{an}的前n项和为Sn,且对任意的n属于正整数有an+Sn=n (1)设bn=an-1,求证:数列{bn}是等
已知数列an是一个以q为公比的等比数列,设bn=1/an,试用an.q表示数列bn的前n项之和Tn
设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有4Sn=(an+1)2
设数列{an}的前n 项和为Sn,对于任意的正整数n,都有an=5Sn+1成立,设bn=(4+an)/(1-an)(n∈
已知数列{an}的通项公式为an=1/(n+1),前n项和为Sn,若对于任意正整数n,不等式S2n-Sn>m/16恒成立
数列an的前n项和为sn,存在常数A,B,C使得an+sn=An^2+Bn+C对任意正整数n都成立.
设数列{an}的前n 项和为Sn,对于任意的正整数n,都有an=5Sn+1成立,求数列{an}的通项公式