求一题的解法:质数P大于5,求336除(7与P的四次方的乘积再加上5)得到的余数是多少?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 01:43:07
求一题的解法:质数P大于5,求336除(7与P的四次方的乘积再加上5)得到的余数是多少?
质数P>5,求336除7P4 +5得到的余数是多少?
质数P>5,求336除7P4 +5得到的余数是多少?
先用比5大的最小质数7去试,得到的余数是12
7P4+5=7(P4—1)+12
只要证明7(P4—1)能被336整除即可
336=3*24*7
只要证明(P4—1)能被3*24整除即可
P4—1=(P2+1)(P2—1)= (P2+1)(P+1) (P—1)
先证明(P2+1)(P+1) (P—1)含3
连续的三个整数可以表示为3k—1,3k,3k+1;P是质数,所以P不能表示为3k(k是整数),那么P只能是3k+1或者3k—1,
那么在(P2+1)(P+1) (P—1)中,(P+1)或者(P—1),就一定有一个是3的倍数啦!因数3就有啦!
P是大于5的质数,那么P一定是奇数,奇数可以表示为(下面不用k了,用m吧)2m+1,m是整数
那么(P2+1)(P+1) (P—1)=(4m2+4m+2)(2m+2)*2m
= 23(2m+2+1) (m+1) m
看到了么23已经出来了,你已经不难看到,m和m+1,一定有一个是偶数啦!,那么24是不是已经够了.
7(P4—1),可以被336整除,7P4+5=7(P4—1)+12,除以336就余12了
就这么简单!
是不是郑外的家长或者学生提问的呀?哎,也不给点分儿.
发现发到这里上标和下标都不显示了
7P4+5=7(P4—1)+12
只要证明7(P4—1)能被336整除即可
336=3*24*7
只要证明(P4—1)能被3*24整除即可
P4—1=(P2+1)(P2—1)= (P2+1)(P+1) (P—1)
先证明(P2+1)(P+1) (P—1)含3
连续的三个整数可以表示为3k—1,3k,3k+1;P是质数,所以P不能表示为3k(k是整数),那么P只能是3k+1或者3k—1,
那么在(P2+1)(P+1) (P—1)中,(P+1)或者(P—1),就一定有一个是3的倍数啦!因数3就有啦!
P是大于5的质数,那么P一定是奇数,奇数可以表示为(下面不用k了,用m吧)2m+1,m是整数
那么(P2+1)(P+1) (P—1)=(4m2+4m+2)(2m+2)*2m
= 23(2m+2+1) (m+1) m
看到了么23已经出来了,你已经不难看到,m和m+1,一定有一个是偶数啦!,那么24是不是已经够了.
7(P4—1),可以被336整除,7P4+5=7(P4—1)+12,除以336就余12了
就这么简单!
是不是郑外的家长或者学生提问的呀?哎,也不给点分儿.
发现发到这里上标和下标都不显示了
一道数学题:若p与p+2都是质数,且p大于3,求p除以3所得的余数.
已知三个质数m、n、p的乘积等于这三个质数和的5倍,求m、n、p
设p为大于五的素数,求证240整除(p的四次方-1)
设p为质数,(a,p的平方)=p,(b,p的立方)=p的平方,那么(ab,p的四次方)=?(a+b,p的四次方)=?
b与p是大于1的自然数,且p+2b,p+4b,p+6b,p+8b,p+10b,p+12b都是质数,求p+b的最小值是多少
已知A是大于1的自然数,且A分别除343.467.622.得到的余数相同,求A是多少?
已知方程X平方-5X+6=0的两个根是P和Q,利用根与系数的关系,求P的四次方+Q的四次方的值
试证明(p-1)!模p的余数是p-1的充要条件是p为质数.
若P为大于5的质数,P*2-1是24的倍数
b与p是大于1的自然数,且p+2b、p+4b、p+6b、p+8b、p+10b、p+12b都是质数,求p+b的
试求方程p^3-q^5=(p+q)^2的质数解p与q
一个大于60的两位数取除251,得到的余数是41,求这个两位数.