矩阵B=-2 -1 求逆矩阵B^-1 2 0
矩阵运算设二阶矩阵A,B满足BA-B=2E,E是单位矩阵 已知B的伴随矩阵B* 求矩阵AB的伴随矩阵B*是 { 0 1
设三阶矩阵A(1,0,0,0,4,0,0 0 2),矩阵B满足AB=A+B,求矩阵B.
4 1 0 设矩阵A= 2 4 1 ,矩阵B满足AB-A=3B+E,求矩阵B (详解,3 0 5
线性代数 求相似矩阵若2阶矩阵A相似于矩阵B=[2 0] ,E为2阶单位矩阵,则与矩阵E-A相似的矩阵[2 -3] [1
矩阵A=|2 1 0| 矩阵B满足ABA*=2BA*+E A*是A伴随矩阵 E为单位矩阵 求矩阵B |1 2 0| |0
一道矩阵运算设二阶矩阵A,B满足BA-B=2E,E是单位矩阵 已知B的伴随矩阵B* 求矩阵AB的伴随矩阵B*是 { 0
设A,B为N阶矩阵,满足2(B^-1)A=A-4E,E为N阶单位矩阵,证明:B-2E为可逆矩阵,并求它的逆矩阵
关于线性代数的逆矩阵已知矩阵A和B,满足AB=2A+B,求矩阵A,其中B=[4 2 3][1 1 0][-1 2 3]
已知矩阵B满足 AB=A-2B,其中A=1 1,5 0 求矩阵B.求完美过程.
已知矩阵A=(2,0;-1,2),且AB=A+B,求B
已知三阶矩阵特征值-1,3,-3,矩阵B=A^3-2A^2,求|B|
矩阵A(1 0 1,0 2 0,1 0 1) ,且A*B+E=A^2+B 求矩阵B