在三角形ABC中,角ABC=45度,CD垂直AB,BE垂直AC,垂足分别为D,E.点F为BC的中点,BE与DF,DC分别
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 14:09:02
在三角形ABC中,角ABC=45度,CD垂直AB,BE垂直AC,垂足分别为D,E.点F为BC的中点,BE与DF,DC分别交于点G,H.角ABE=角CBE,己证BE=AC
证明:(1)∵∠BDC=∠BEC=∠CDA=90°,∠ABC=45°,
∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°,
∴DB=DC,∠ABE=∠DCA,
∵在△DBH和△DCA中
∠BDH=∠CDA BD=CD ∠HBD=∠ACD ,
∴△DBH≌△DCA,
∴BH=AC.
(2)连接CG,
∵F为BC的中点,DB=DC,
∴DF垂直平分BC,
∴BG=CG,
∵∠ABE=∠CBE,BE⊥AC,
∴∠AEB=∠CEB,
在△ABE和△CBE中
∵ ∠AEB=∠CEB BE=BE ∠CBE=∠ABE ,
∴△ABE≌△CBE,
∴EC=EA,
在Rt△CGE中,由勾股定理得:BG的平方-GE的平方=EA的平方
∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°,
∴DB=DC,∠ABE=∠DCA,
∵在△DBH和△DCA中
∠BDH=∠CDA BD=CD ∠HBD=∠ACD ,
∴△DBH≌△DCA,
∴BH=AC.
(2)连接CG,
∵F为BC的中点,DB=DC,
∴DF垂直平分BC,
∴BG=CG,
∵∠ABE=∠CBE,BE⊥AC,
∴∠AEB=∠CEB,
在△ABE和△CBE中
∵ ∠AEB=∠CEB BE=BE ∠CBE=∠ABE ,
∴△ABE≌△CBE,
∴EC=EA,
在Rt△CGE中,由勾股定理得:BG的平方-GE的平方=EA的平方
Q如图,在三角形ABC中 角ABC=45°CD垂直AB,BE垂直AC,垂足分别是D,E.F为BC中点,BE于DF,DC分
如图,在△abc中,∠abc=45°,cd⊥ab,be⊥ac,垂足分别为点d,e,f为bc的中点,be与df、dc分别交
在三角形ABC中,D为BC的中点,DE垂直AB,DF垂直AC,垂足分别为点E,F,且BE=CF,求证AD是
如图,在三角形ABC中,D是BC的中点,DE垂直于AB,DF垂直于AC,垂足分别是E,F,BE=CF.
如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D 、E ,F为BC中点,BE与DF、DC分别交
如图 在三角形abc中 d是bc的中点,ad平分角bac,de垂直ab,df垂直ac,垂足分别为e,f,求证:be=fc
在三角形ABC中,AB=AC,AD垂直于BC,垂足为D,E、G分别是AD、AC的中点,DF垂直于BE,垂足为F,求证FG
如图在三角形abc中ab等于ac点d是BC的中点,DE垂直AC,DF垂直AB,垂足分别为E,F,求证DE=DF
如图15,在三角形ABC中,已知AB=AC,D为BC的中点,DE垂直于AC,DF垂直于AB,垂足分别是点E,F,求证DF
如图在三角形abc中cd垂直ab de垂直ac df垂直bc 垂足分别为d.e.f ca.ce.cb.cf相等吗
如图,在三角形ABC中,D是BC的中点,DE垂直AB,DF垂直AC,垂足分别是E,F.BE=CF,求证AD是三角形ABC
如图,在三角形abc中,d为bc的中点,de垂直ab,df垂直ac,点e,f为垂足,de等于df.求