lim (n/(n²+1)+n/(n²+2²)+…………+n/(n²+n
求极限 lim n[1/(n^2+1)+1/(n^2+2^2)+……+1/(n^n+n^n)] (n趋向于无穷大,n^n
1.lim n→∞ ㏑【(1+1/n)²(1+2/n)²…(1+n/n)²】^½
求极限lim(n→∞)1/(n²+n+1)+2/(n²+n+2)+...+n/(n²+n+
数列极限lim [(1²+2²+3²+ …+n²)/n³](n->∞)
lim(1/n^2+4/n^2+7/n^2+…+3n-1/n^2)
求极限 lim【1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n
求证1²+2²+3²+……+n²=(1/6*n(n+1)(2n+1))/n(n为
用定积分表示下列极限lim(n→∞)(1/n²+2/n²+……+(n-1)/n²)
请问如何证明lim(n→∞)[n/(n2+n)+n/(n2+2n)+…+n/(n2+nn)]=1,
组合:C(n,0)+C(n,1)+……+C(n,n)=n^2
根号【(2n+1)/(n²+n)】平方-4/(n平方+n )化简
数列的极限计算lim(3n²+4n-2)/(2n+1)²