已知等腰三角形ABC,角ACB等于90,AC=BC,D为BC边上的一动点,BC等于nDC,CE垂直AD于点E,延长BE交
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 15:15:45
已知等腰三角形ABC,角ACB等于90,AC=BC,D为BC边上的一动点,BC等于nDC,CE垂直AD于点E,延长BE交AC于F.
1.若n等于3,求CE比DE;AE比DE
2.若n等于2,求证:AF等于2FC
3.当n为多少时,F为AC的中点.这是一小朋友问我的,
1.若n等于3,求CE比DE;AE比DE
2.若n等于2,求证:AF等于2FC
3.当n为多少时,F为AC的中点.这是一小朋友问我的,
/>(1)由题意得,△CED∽ACD.
∴CE:DE=AC:CD.
∵AC=BC,
∴AC:CD=n=3.
∴CE:DE=3.
同理可得:AE:DE=9.
(2)当n=2时,D为BC的中点,取BF的中点G,连接DG,
则DG= 12FC,DG∥FC.
∵CE⊥AD,∠ACB=90°,
∴∠ECD+∠EDG=CAD+ADC=90°.
∴∠ECD=∠CAD.
∵tan∠ECD= ED/EC,tan∠CAD= DC/AC= EC/EA,
∴ ED/EC= EC/EA= DC/AC.
∵AC=BC,BC=2DC,
∴ ED/EC= EC/EA= DC/AC= 1/2.
∴ ED/AE= 1/4.
∵DE∥FA,
∴△GDE∽△FAE.
∴ DG/FA= DE/AE.
∴DG= 1/4AF.
∵DG= 1/2FC,
∴AF=2FC.
(3)∵AF=FC时,GE:EF=1:2,
∴DE:AE=1:2,CE2=DE•AE.
∴CE:DE=n=(1+根号 5):2.
∴当n= (1+根号5)/2,F为AC的中点.
∴CE:DE=AC:CD.
∵AC=BC,
∴AC:CD=n=3.
∴CE:DE=3.
同理可得:AE:DE=9.
(2)当n=2时,D为BC的中点,取BF的中点G,连接DG,
则DG= 12FC,DG∥FC.
∵CE⊥AD,∠ACB=90°,
∴∠ECD+∠EDG=CAD+ADC=90°.
∴∠ECD=∠CAD.
∵tan∠ECD= ED/EC,tan∠CAD= DC/AC= EC/EA,
∴ ED/EC= EC/EA= DC/AC.
∵AC=BC,BC=2DC,
∴ ED/EC= EC/EA= DC/AC= 1/2.
∴ ED/AE= 1/4.
∵DE∥FA,
∴△GDE∽△FAE.
∴ DG/FA= DE/AE.
∴DG= 1/4AF.
∵DG= 1/2FC,
∴AF=2FC.
(3)∵AF=FC时,GE:EF=1:2,
∴DE:AE=1:2,CE2=DE•AE.
∴CE:DE=n=(1+根号 5):2.
∴当n= (1+根号5)/2,F为AC的中点.
【有图已知△ABC中,角ACB=90°,AC=BC,D为边长边上一动点,BC=nDC,CE⊥AD于点E,P为AB的中点,
已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长
等腰三角形ABC,AB=AC,角ACB=90度,AD是BC边上的中线,已知CE垂直于AD于E,交AB边于F点求证:角AD
在直角三角形abc中,角acb等于90度,ac等于bc点d是bc的中点ce垂直于ad垂足e,bf平行于ac交ce的延长线
在RT三角形ABC中,∠ABC是90度,D为BC边上的点,BE垂直AD于点E,延长BE交AC于点F ,AB/BC=BD/
已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F
等腰三角形ABC中,角BAC=90度,D E分别为AB AC边上的点,AD=AE,AF垂直BE交BC于点F,过点F作FG
如图,在三角形ABC中,AC等于AB,延长BC至D,使CD等于BC,连接AD,过点C作CE垂直于BD,交AD于E,BE交
如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点
如图 已知在△abc中,角acb=90°,cd垂直ab于点d,点e在ac上,ce=bc,过e点作ac的垂线,交cd的延长
如图在三角形ACB中角ACB等于90度,点D在AB上,AC等于AD,DE垂直CD交BC于E点,O为CE的中点,求证OA平
在三角形abc中,角acb等于90度,ac等于bc,直线经过点C,且ad垂直于d,be垂直于mn于e.