数列.第十五题第二小题
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 09:34:49
数列.第十五题第二小题
1.
设公差为d
(a3+a8)-(a2+a7)=(a3-a2)+(a8-a7)=2d=-29-(-23)=-6
d=-3
a2+a7=a1+d+a1+6d=2a1+7d=-23
a1=(-23-7d)/2=[-23-7×(-3)]/2=-1
an=a1+(n-1)d=-1+(-3)(n-1)=-3n+2
数列{an}的通项公式为an=-3n+2
2.
由an+bn是首项为1,公比为c的等比数列得:
a1+b1=1 b1=1-a1=1-(-1)=2
an+bn=1×c^(n-1)=c^(n-1)
bn=c^(n-1)-an=c^(n-1)+3n-2
Sn=b1+b2+...+bn
=[1+c+...+c^(n-1)]+3×(1+2+...+n) -2n
=[1+c+...+c^(n-1)]+ n(3n-1)/2
c=1时,Sn=n+ n(3n-1)/2=n(3n+1)/2
c≠0且c≠1时,Sn=1×(cⁿ-1)/(c-1) +n(3n-1)/2=(cⁿ-1)/(c-1) +n(3n-1)/2
注意:第2问的c是求不出来的,针对不同的公比c,对应有不同的数列{bn},这是因为对某一确定项第k项,ak的值是一定的,c不定的话,那么总能用c表示数列{bn}的第k项bk,得到的bk的值与公比c的取值有关,因此也不是定值.
再问: 谢谢啦我看懂了!
设公差为d
(a3+a8)-(a2+a7)=(a3-a2)+(a8-a7)=2d=-29-(-23)=-6
d=-3
a2+a7=a1+d+a1+6d=2a1+7d=-23
a1=(-23-7d)/2=[-23-7×(-3)]/2=-1
an=a1+(n-1)d=-1+(-3)(n-1)=-3n+2
数列{an}的通项公式为an=-3n+2
2.
由an+bn是首项为1,公比为c的等比数列得:
a1+b1=1 b1=1-a1=1-(-1)=2
an+bn=1×c^(n-1)=c^(n-1)
bn=c^(n-1)-an=c^(n-1)+3n-2
Sn=b1+b2+...+bn
=[1+c+...+c^(n-1)]+3×(1+2+...+n) -2n
=[1+c+...+c^(n-1)]+ n(3n-1)/2
c=1时,Sn=n+ n(3n-1)/2=n(3n+1)/2
c≠0且c≠1时,Sn=1×(cⁿ-1)/(c-1) +n(3n-1)/2=(cⁿ-1)/(c-1) +n(3n-1)/2
注意:第2问的c是求不出来的,针对不同的公比c,对应有不同的数列{bn},这是因为对某一确定项第k项,ak的值是一定的,c不定的话,那么总能用c表示数列{bn}的第k项bk,得到的bk的值与公比c的取值有关,因此也不是定值.
再问: 谢谢啦我看懂了!