张老师给出了问题:如图(1),△ABC为等边三角形,动点D在边CA上,动点P边BC上,若这两点分别
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 15:09:23
张老师给出了问题:如图(1),△ABC为等边三角形,动点D在边CA上,动点P边BC上,若这两点分别
如图(1),△ABC为等边三角形,动点D在边CA上,动点P边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连接AP,BD交于点Q,两点运动过程中AP=BD成立吗?请证明你的结论;
经过思考,小明展示了一种正确的解题思路:由△ABP≌△BCD,从而得出AP=BD.
在此基础上,同学们作了进一步探究:
(1)小颖提出:如果把原题中“动点D在边CA上,动点P边BC上,”改为“动点D,P在射线CA和射线BC上运动”,其他条件不变,如图(2)所示,两点运动过程中∠BQP的大小保持不变.请你利用图(2)的情形,求证:∠BQP=60°;
(2)小华提出:如果把原题中“动点P在边BC上”改为“动点P在AB的延长线上运动,连接PD交BC于E”,其他条件不变,如图(3),则动点D,P在运动过程中,DE始终等于PE.你认为小华的观点正确吗?如果正确,写出证明过程.
如图(1),△ABC为等边三角形,动点D在边CA上,动点P边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连接AP,BD交于点Q,两点运动过程中AP=BD成立吗?请证明你的结论;
经过思考,小明展示了一种正确的解题思路:由△ABP≌△BCD,从而得出AP=BD.
在此基础上,同学们作了进一步探究:
(1)小颖提出:如果把原题中“动点D在边CA上,动点P边BC上,”改为“动点D,P在射线CA和射线BC上运动”,其他条件不变,如图(2)所示,两点运动过程中∠BQP的大小保持不变.请你利用图(2)的情形,求证:∠BQP=60°;
(2)小华提出:如果把原题中“动点P在边BC上”改为“动点P在AB的延长线上运动,连接PD交BC于E”,其他条件不变,如图(3),则动点D,P在运动过程中,DE始终等于PE.你认为小华的观点正确吗?如果正确,写出证明过程.
原题
AP=BD
等边三角形ABC所以AB=BC
角ABC=角BCA
又P,D相同速度移动,所以CD=BP
所以三角形ABP与三角形BCD全等
所以AP=BD
1)
同上三角形ABP与三角形BCD全等
所以角D=角P
又角DAQ=角PAC
所以角BQP=角D+角DAQ=角P+角PAC=角ACB=60
2)DE=PE
AP=BD
等边三角形ABC所以AB=BC
角ABC=角BCA
又P,D相同速度移动,所以CD=BP
所以三角形ABP与三角形BCD全等
所以AP=BD
1)
同上三角形ABP与三角形BCD全等
所以角D=角P
又角DAQ=角PAC
所以角BQP=角D+角DAQ=角P+角PAC=角ACB=60
2)DE=PE
如图,已知△ABC为等边三角形,点D、E、F分别在边BC、CA、AB上,且△DEF也是等边三角形.
如图,△ABC为等边三角形,点D,E,F分别在边AB,BC,CA上,且△DEF也是等边三角形,求证AD=BE=CF
1,如图,等边三角形ABC的边长为3,点P、Q分别是AB、BC上的动点(点P、Q与三角形ABC的顶点不重合),且AP=B
如图,△ABC是等边三角形D,E分别是BC,CA上的点,且BD=CE,以AD为边作等边三角形ADF.求证:
如图,三角形ABC是边长为1的等边三角形,P是AB上的一个动点,点D在BC的延长线上,且AP=CD,PD和AC相交于点E
如图 在等边三角形ABC中,点D,E,F分别在AB,BC,CA上,AD=BE=CF,△DEF为等边三角形
如图,已知等边三角形ABC的边长为10,点P、Q分别为边AB、AC上的一个动点,点P从点B出发以1cm/s的速度向点A运
已知:如图△ABC为等边三角形,点D,E,F分别在BC,CA,AB上,且AF=BD=CE,求证:△DEF是等边三角形
如图,△ABC为等边三角形,点DEF分别在边AB,BC,CA上,且△DEF也是等边三角形,求证AD=BE=CF
数学课上,张老师出示了问题:如图1,△ABC是等边三角形,点D是边BC的中点.∠ADE=60°,且DE交△ABC外角∠A
如图13.3-15,△ABC是等边三角形,点D,E,F分别是线段AB,BC,CA上的点. (1)若
如图,三角形ABC为等边三角形D,F分别是BC,AB上的动点且CD=BF,一AD为边作等边三角形ADE,联结EF,CF