求1/(1*2)+1/(2*3)+1/(3*4)+.+1/(N*(N+1))的值,N=20, 要求:按四舍五入的方式精确
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 10:20:37
求1/(1*2)+1/(2*3)+1/(3*4)+.+1/(N*(N+1))的值,N=20, 要求:按四舍五入的方式精确到小数点后第二位.
1/(1*2)+1/(2*3)+1/(3*4)+.+1/(N*(N+1))
= 1-1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ...+ 1/N - 1/(N+1)
= 1- 1/(N+1) = N/(N+1)
所以程序是:
#include
#define N 20
int main()
{
float a = N;
float b = 0;
b = a/(a+1.0);
printf("%3.2f\n",b);
return 0;
}
= 1-1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ...+ 1/N - 1/(N+1)
= 1- 1/(N+1) = N/(N+1)
所以程序是:
#include
#define N 20
int main()
{
float a = N;
float b = 0;
b = a/(a+1.0);
printf("%3.2f\n",b);
return 0;
}
若n²+3n=1,求n(n+1)(n+2)+1的值.
1\n(n+3)+1\(n+3)(n+6)+1\(n+6)(n+9)=1\2 n+18 n为正整数,求n的值
求(1^n+2^n+3^n)^1/n,n趋于无穷大的极限
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
化简:当n=1/2时,求(3n-1)(n+1)+(2n-1)(n-1)的值.
若3n^2-n=1,求6n^3+7n^2-5n+2003的值
Sn=n(n+2)(n+4)的分项等于1/6[n(n+2)(n+4)(n+5)-(n-1)n(n+2)(n+4)]吗?
lim((n^2+2n-1)/(2n^2-n+3))的值 求详解
c语言计算s=(1-1/2)+(1/3-1/4)+ +(1/(2n-1)-1/(2n))的值,要求:按四舍五入的方
求数列an=n(n+1) 的前n项和 到 an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂
已知m/n=5/3 求(1/m+n+1/m-n)÷1/n-n/m-n÷m+n/n的值,
已知:m/n=5/3,求(1/m+n+1/m-n)÷1/n-n/m-n÷m+n/n的值