如图,△ACB=90°,D为BC中点,E为AD中点,FG平行于AC,求证BF=2CG 复制别人的不采纳,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:31:01
如图,△ACB=90°,D为BC中点,E为AD中点,FG平行于AC,求证BF=2CG 复制别人的不采纳,
答得乱七八糟的无视掉
答得乱七八糟的无视掉
证明:过点D作DH∥CF交AB于F
∵∠ACB=90,E是AD的中点
∴CE=DE=AE (直角三角形中线特性)
∴∠FCB=∠ADC,∠DAC=∠ACF
∵FG∥AC
∴∠AGF=∠DAC、∠CFD=∠CFG
∴∠AGF=∠CFG
∴EF=EG
∵∠AEF=∠CEG
∴△AEF≌△CEG (SAS)
∴AF=CG
∴等腰梯形ACGF
∴∠ACG=∠BAC
∵∠ACB=90
∴∠BAC+∠B=90,∠ACG+∠BCG=90
∴∠B=∠BCG
∵DH∥CF
∴∠BDH=∠FCB
∴∠BDH=∠ADC
∵D是BC的中点
∴BD=CD
∴△BDH≌△CDG (ASA)
∴BH=CG
又∵D是BC的中点,DH∥CF
∴DH是△BCF的中位线
∴BF=2BH
∴BF=2CG
数学辅导团解答了你的提问,
∵∠ACB=90,E是AD的中点
∴CE=DE=AE (直角三角形中线特性)
∴∠FCB=∠ADC,∠DAC=∠ACF
∵FG∥AC
∴∠AGF=∠DAC、∠CFD=∠CFG
∴∠AGF=∠CFG
∴EF=EG
∵∠AEF=∠CEG
∴△AEF≌△CEG (SAS)
∴AF=CG
∴等腰梯形ACGF
∴∠ACG=∠BAC
∵∠ACB=90
∴∠BAC+∠B=90,∠ACG+∠BCG=90
∴∠B=∠BCG
∵DH∥CF
∴∠BDH=∠FCB
∴∠BDH=∠ADC
∵D是BC的中点
∴BD=CD
∴△BDH≌△CDG (ASA)
∴BH=CG
又∵D是BC的中点,DH∥CF
∴DH是△BCF的中位线
∴BF=2BH
∴BF=2CG
数学辅导团解答了你的提问,
如图,在△ABC中,∠ACB=90°,D为BC中点,E为AD中点,FG//AC,求证:BF=2CG
如图,在△abc中,∠acb=90°,d为bc中点,e为ad中点,fg平行ac,求证:bf=2cg 不要用初3知识,如相
在三角形abc中,角acb=90度,d为bc中点,e为ad中点,fg平行ac,求证bf=2cg
在三角形ACB中,角ACB=90°,D为BC中点,E为AD中点,FG,//AC.求证:BF=2CG
如图,在三角形ABC中,角ACB=90°且AC=BC,D为BC的中点,CG垂直AD于E,BF平行AC交CG的延长线于F,
如图,在三角形ABC中,角ACB=90°且AC=BC,D为BC的中点,CG垂直AD于E,BF平行AC交CG的延长线于F
如图,在△ACB中,∠ACB=90°,D为BC中点,E为AD中点,FG//AC.
如图,在三角形ABC中,AC=BC,AC⊥BC,D为BC的中点,CF⊥AD于E,BF\\AC,说明DG=FG
如图,△ABC中,BF⊥AC于F,CG⊥AB于G,D、E分别是BC、FG的中点.求证:DE⊥FG
在△ABC中,∠ACB=90°且AC=BC,D为BC的中点,OG⊥AD于E,BF‖AC交CG的延长线于F,连接DG,试说
如图,在三角形abc中,ac=bc,ac垂直bc,d为bc的中点,cf垂直ad于e,bf平行ac,试说明DG=FG
如图,在△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD,垂足为点E,BF‖AC交CE的延长线于点F