超难 22. 考察Fn=[aF(n-1)+b]/[cF(n-1)+d](a,b,c,d为常数),称x=(ax+b)/(c
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 14:54:08
超难
22. 考察Fn=[aF(n-1)+b]/[cF(n-1)+d](a,b,c,d为常数),称x=(ax+b)/(cx+d)(*)为该递推关系的不动点方程:
(1)若(*)有两个相异复数根x1和x2,试证明数列[(Fn-x1)/(Fn-x2)]是等比数列,并求出公比和Fn.
(2)若(*)有两个相同复数根x0,试证明数列{1/(Fn-x0)}是等差数列,并求出公差和Fn.
22. 考察Fn=[aF(n-1)+b]/[cF(n-1)+d](a,b,c,d为常数),称x=(ax+b)/(cx+d)(*)为该递推关系的不动点方程:
(1)若(*)有两个相异复数根x1和x2,试证明数列[(Fn-x1)/(Fn-x2)]是等比数列,并求出公比和Fn.
(2)若(*)有两个相同复数根x0,试证明数列{1/(Fn-x0)}是等差数列,并求出公差和Fn.
(1)
F(n)-x1
=[aF(n-1)+b]/[cF(n-1)+d]-x1
=[aF(n-1)+b]/[cF(n-1)+d]-(ax1+b)/(cx1+d)
={(ad-bc)[F(n-1)-x1]}/{[cF(n-1)+d](cx1+d)}
同理
F(n)-x2
={(ad-bc)[F(n-1)-x2]}/{[cF(n-1)+d](cx2+d)}
所以
{[F(n)-x1]/[F(n)-x2]}={[F(n-1)-x1]/[F(n-1)-x2]}*[(cx2+d)/(cx1+d)]
即
{[F(n)-x1]/[F(n)-x2]}/{[F(n-1)-x1]/[F(n-1)-x2]}=[(cx2+d)/(cx1+d)]
所以
{[F(n)-x1]/[F(n)-x2]}为等比数列,公比为[(cx2+d)/(cx1+d)]
至于F(n),不知道F(0)(或者其他某一项)是没有办法得出来的.就像这个等比数列,只知道公比,得不出通项公式来.
(2)
不想做了.
F(n)-x1
=[aF(n-1)+b]/[cF(n-1)+d]-x1
=[aF(n-1)+b]/[cF(n-1)+d]-(ax1+b)/(cx1+d)
={(ad-bc)[F(n-1)-x1]}/{[cF(n-1)+d](cx1+d)}
同理
F(n)-x2
={(ad-bc)[F(n-1)-x2]}/{[cF(n-1)+d](cx2+d)}
所以
{[F(n)-x1]/[F(n)-x2]}={[F(n-1)-x1]/[F(n-1)-x2]}*[(cx2+d)/(cx1+d)]
即
{[F(n)-x1]/[F(n)-x2]}/{[F(n-1)-x1]/[F(n-1)-x2]}=[(cx2+d)/(cx1+d)]
所以
{[F(n)-x1]/[F(n)-x2]}为等比数列,公比为[(cx2+d)/(cx1+d)]
至于F(n),不知道F(0)(或者其他某一项)是没有办法得出来的.就像这个等比数列,只知道公比,得不出通项公式来.
(2)
不想做了.
已知(1+x^2)(1+2x)=ax^3+bx^2+cx+d,其中a,b,c,d为常数那么a+b+c+d=?
证明:如果∫f(x)d×=f(x)+c则∫f(ax+b)dx=1/af(ax+b)+c其中a,b
已知(1+x^2)(1+2x)=ax^3+bx^2+cx+d,其中a、b、c、d为常数.求b的值
已知abcd为实数,M=4(a-b)(c-d)N=(a-b)(c-b) (d-a)(c-b) (c-d)(c-b) (a
a=b=c=1; a+=b*=c%=a+b+c; printf("%d,%d,%d\n",a,b,c) 计算顺序
设f(x)=(ax+b)sinx+(cx+d)cosx,试确定常数a,b,c,d,使得f′(x)=xcosx.
求数列a(n+1)=ban+c^n,(b,c为常数,n为正整数)通项公式求法
定义 新运算 a⊕b=n(n为常数)时,得(a+c)⊕b=n+c,a⊕(b+c)=n-2c,已知1⊕1=2,那么2010
A+A=B B+B=C C+C=D.问N=?A
A为n阶矩阵,B为m阶矩阵,C为m×n矩阵,D为n×m矩阵,其中A和B可逆;证明:|A||D-CA^-1B|=|D||A
a,b,c不全为0,a+b+c=a3+b3+c3=0,称使得a^n+b^n+c^n=0恒成立的正整数n为“吉祥数”,不超
matlab公式 t=[1/(a*b)]*[m-n-(2*d*c/b)]*log[(m*b-2*d*c)/(n*b-2*