一已知a>b>c,求证 1/(a-b) +1/(b-c)≥4/(a-c)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 18:00:31
一已知a>b>c,求证 1/(a-b) +1/(b-c)≥4/(a-c)
二平面内有四个点,没有三点共线,证明:以任意三个点为顶点的三角形不可能都是锐角三角形
二平面内有四个点,没有三点共线,证明:以任意三个点为顶点的三角形不可能都是锐角三角形
(1)用重要不等式可证:
因为(a-b+b-c)[ 1/(a-b) +1/(b-c)]
=1+(a-b)/(b-c)+(b-c)/(a-b)+1
=2+(a-b)/(b-c)+(b-c)/(a-b)
又因为a>b>c,所以(a-b)/(b-c)+(b-c)/(a-b)>=2
所以(a-b+b-c)[ 1/(a-b) +1/(b-c)]>=4
所以1/(a-b) +1/(b-c)≥4/(a-c)
(2)用反证法可证:
证明:假设以任意三个点为顶点的三角形都是锐角三角形,则以这四个顶点连成的凸四边形的四个内角和小于360度,这与凸四边形的四个内角和等于360度矛盾,所以以任意三个点为顶点的三角形不可能都是锐角三角形.
因为(a-b+b-c)[ 1/(a-b) +1/(b-c)]
=1+(a-b)/(b-c)+(b-c)/(a-b)+1
=2+(a-b)/(b-c)+(b-c)/(a-b)
又因为a>b>c,所以(a-b)/(b-c)+(b-c)/(a-b)>=2
所以(a-b+b-c)[ 1/(a-b) +1/(b-c)]>=4
所以1/(a-b) +1/(b-c)≥4/(a-c)
(2)用反证法可证:
证明:假设以任意三个点为顶点的三角形都是锐角三角形,则以这四个顶点连成的凸四边形的四个内角和小于360度,这与凸四边形的四个内角和等于360度矛盾,所以以任意三个点为顶点的三角形不可能都是锐角三角形.
一已知a>b>c,求证 1/(a-b) +1/(b-c)≥4/(a-c)
已知a、b、c>0.(1)求证:a^3+b^3≥a^2b+ab^2;(2)a+b+c=1,求证:a^3+b^3+c^3≥
已知:(a+b-c)/c=(b+c-a)/a=(c+a-b)/b,a+b+c≠0.求证::(a+b)(b+c)(c+a)
已知a+b+c=1,求证:(a/1+b+c)+(b/1+a+c)+(c/1+a+b)≥3/5
已知a ,b ,c 为正数,求证 a^2a × b^2b × c^2c ≥a^(b+c) × b^(c+a) × c^(
已知a,b,c属于R+,且a+b+c=1,求证4a^2/(1-b)+4b^2/(1-c)+4c^2
(选修4-5:不等式选讲)已知a>b>c>0,求证:a+33(a−b)(b−c)c≥6
1.若a>b>c,求证1/a-b+1/b-c≥4/a-c
设a,b,c,d为正数,求证(a+c/a+b)+(b+d/b+c)+(c+a/c+d)+(d+b/d+a)≥4
高二不等式证明(1)已知a,b,c,是正数,求证a^2a*b^2b*c^2c>=a^(b+c)*b^(c+a)*c^(a
已知a>b>c,求证1/(a-b)+1/(b-c)+1/(c-a)>0
已知a:b=b:c 求证(a+b+c)的平方+a平方+b平方+c平方=2(a+b+c)(a+c)