设函数f(x)=x(ex-1)-ax2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 04:58:11
设函数f(x)=x(ex-1)-ax2
(Ⅰ)若a=
(Ⅰ)若a=
1 |
2 |
(I)a=
1
2时,f(x)=x(ex-1)-
1
2x2,
f′(x)=ex−1+xex−x=(ex-1)(x+1)
令f′(x)>0,可得x<-1或x>0;令f′(x)<0,可得-1<x<0;
∴函数的单调增区间是(-∞,-1),(0,+∞);单调减区间为(-1,0);
(II)f(x)=x(ex-1-ax).
令g(x)=ex-1-ax,则g'(x)=ex-a.
若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.
若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.
综合得a的取值范围为(-∞,1].
1
2时,f(x)=x(ex-1)-
1
2x2,
f′(x)=ex−1+xex−x=(ex-1)(x+1)
令f′(x)>0,可得x<-1或x>0;令f′(x)<0,可得-1<x<0;
∴函数的单调增区间是(-∞,-1),(0,+∞);单调减区间为(-1,0);
(II)f(x)=x(ex-1-ax).
令g(x)=ex-1-ax,则g'(x)=ex-a.
若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.
若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.
综合得a的取值范围为(-∞,1].
设函数f(x)=ex-1-x-ax2.
设函数f(x)=ex-e-x
设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)ex的一个极值点,则下列图象不可能为y=
设函数f(x)=xln(ex+1)−12x
设函数f(x)=xex-ax2.
设f(x)=ex(ax2+x+1),且曲线y=f(x)在x=1处的切线与x轴平行.(1)求a的值,并讨论f(x)的单调性
设函数f(x)=ex-x(e为自然对数的底数).
(2014•漳州二模)已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.
【急求】设f(x)=ex(ax2+x+1)当a=0时,是否存在实数m使不等式mx+1≥-x的平方+4x+1和2f(x)≥
设函数f(x)的定义域为R,且f(x+2)=f(x+1)-f(x),若f(4)=-2则函数g(x)=ex+2f(2011
已知函数f(x)满足f(x) =f‘(1)ex-
已知函数f(x)=x3+ax2+x+1,a属于R ,设函数f(x)在区间(-2\3,-1\3)内是减函数,