已知数列﹛an﹜的前n项和为Sn,满足Sn=2an-2n(n∈N+)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 04:02:20
已知数列﹛an﹜的前n项和为Sn,满足Sn=2an-2n(n∈N+)
1 求﹛an﹜的通项公式an
2 若数列﹛bn﹜满足bn=㏒2(an+2),Tn为数列﹛bn/(an+2)﹜的前n项和
求证tn≥1/2
1 求﹛an﹜的通项公式an
2 若数列﹛bn﹜满足bn=㏒2(an+2),Tn为数列﹛bn/(an+2)﹜的前n项和
求证tn≥1/2
a(1)=s(1)=2a(1)-2,a(1)=2.
a(n+1)=s(n+1)-s(n)=2a(n+1)-2-2a(n),
a(n+1)=2a(n)+2
a(n+1)+2=2[a(n)+2]
{a(n)+2}是首项为a(1)+2=4,公比为2的等比数列.
a(n)+2=4*2^(n-1)=2^(n+1),
a(n)=2^(n+1)-2,
b(n)=log_{2}[a(n)+2]=log_{2}[2^(n+1)]=n+1,
c(n)=b(n)/[a(n)+2]=(n+1)/2^(n+1),
t(n)=2/2^2 + 3/2^3 + 4/2^4 + ...+ n/2^n + (n+1)/2^(n+1),
2t(n)= 2/2 + 3/2^2 + 4/2^3 + ...+ n/2^(n-1) + (n+1)/2^n,
t(n)=2t(n)-t(n)=2/2 + 1/2^2 + 1/2^3 + ...+ 1/2^n - (n+1)/2^(n+1)
=1/2+1/2 + 1/2^2 + ...+1/2^n -(n+1)/2^(n+1)
=1/2+(1/2)[1-1/2^n]/(1-1/2) - (n+1)/2^(n+1)
=1/2+1-1/2^n - (n+1)/2^(n+1)
=3/2 - (n+3)/2^(n+1),
t(n)-1/2=1 - (n+3)/2^(n+1) = [2^(n+1) - n - 3] /2^(n+1),
2^(n+1)=(1+1)^(n+1)=1^(n+1)+(n+1)1^n + ...+ (n+1)*1 + 1 >=1+(n+1) + 1 = n+3
2^(n+1)>=n+3.
t(n)-1/2 = [2^(n+1)-n-3]/2^(n+1)>=0,
t(n)>=1/2
a(n+1)=s(n+1)-s(n)=2a(n+1)-2-2a(n),
a(n+1)=2a(n)+2
a(n+1)+2=2[a(n)+2]
{a(n)+2}是首项为a(1)+2=4,公比为2的等比数列.
a(n)+2=4*2^(n-1)=2^(n+1),
a(n)=2^(n+1)-2,
b(n)=log_{2}[a(n)+2]=log_{2}[2^(n+1)]=n+1,
c(n)=b(n)/[a(n)+2]=(n+1)/2^(n+1),
t(n)=2/2^2 + 3/2^3 + 4/2^4 + ...+ n/2^n + (n+1)/2^(n+1),
2t(n)= 2/2 + 3/2^2 + 4/2^3 + ...+ n/2^(n-1) + (n+1)/2^n,
t(n)=2t(n)-t(n)=2/2 + 1/2^2 + 1/2^3 + ...+ 1/2^n - (n+1)/2^(n+1)
=1/2+1/2 + 1/2^2 + ...+1/2^n -(n+1)/2^(n+1)
=1/2+(1/2)[1-1/2^n]/(1-1/2) - (n+1)/2^(n+1)
=1/2+1-1/2^n - (n+1)/2^(n+1)
=3/2 - (n+3)/2^(n+1),
t(n)-1/2=1 - (n+3)/2^(n+1) = [2^(n+1) - n - 3] /2^(n+1),
2^(n+1)=(1+1)^(n+1)=1^(n+1)+(n+1)1^n + ...+ (n+1)*1 + 1 >=1+(n+1) + 1 = n+3
2^(n+1)>=n+3.
t(n)-1/2 = [2^(n+1)-n-3]/2^(n+1)>=0,
t(n)>=1/2
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=an2+n-4(n∈N*).
已知数列(an)的前n项和为Sn,满足an+Sn=2n,证明数列(an-2)为等比数列并求出an
已知数列{an}的前n项和为Sn,且满足Sa+Sn=n (n属于N)
设数列{an}前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
已知数列{an}的前n项和为Sn,满足an+Sn=2n.
已知数列an的前n项和为sn,且满足sn=n²an-n²(n-1),a1=1/2
已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n属于N*)
数列{an}的前n项和Sn满足:Sn=2an-3n(n属于N*)
已知数列{an}的前n项和为Sn,a1=-23,Sn+1Sn=an-2(n≥2,n∈N)
已知数列﹛an﹜的前n项和为sn,且2sn=2-(2n-1)an(n∈N*)
已知数列{An}的前n项和为Sn,且满足Sn=2An-3n(n属于N+) 1.求{An}的通项公式
已知数列{an}满足a1=1,an+1=Sn+(n+1)(n∈N*),其中Sn为{an}的前n项和,