1.在数列{an}中,a1=1,a(n+1)=(1+1/n)an+(n+1)/2的n次方
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 17:29:22
1.在数列{an}中,a1=1,a(n+1)=(1+1/n)an+(n+1)/2的n次方
(1)设bn=an/n,求数列{bn}的通项公式
(2)求数列{an}的前n项和
1 n和n+1均为a的下标
(1)设bn=an/n,求数列{bn}的通项公式
(2)求数列{an}的前n项和
1 n和n+1均为a的下标
a(n+1)=[(n+1)/n]an+(n+1)/2^n
两边同除以n+1
a(n+1)/(n+1)-(an)/n=1/2^n
(an)/n-a(n-1)/(n-1)=1/2^(n-1)
.
(a2)/2-a1=1/2
叠加,中间项减去
a(n+1)/(n+1)-a1=1/2^n+1/2^(n-1)+...+1/2
=(1/2)(1-1/2^n)/(1-1/2)
=1-1/2^n
a(n+1)/(n+1)=2-1/2^n
an/n=2-1/2^(n-1)
(1)通项公式 bn=an/n=2-1/2^(n-1)
(2) an=2n-n/2^(n-1)
设前n项和为Sn=∑2n-∑n/2^(n-1)
Cn=∑2n Tn=∑n/2^(n-1)
则Cn=2[n(n+1)/2]=n(n+1)=n^2+n
Tn=1+2/2+3/2^2+.+n/2^(n-1)
(1/2)Tn=1/2+2/2^2+3/2^3+...+n/2^n
Tn-(1/2)Tn=1+1/2+1/2^2+.+1/2^(n-1)-n/2^n
=(1-1/2^n)/(1-1/2)-n/2^n
(1/2)Tn=2(1-1/2^n)-n/2^n
Tn=4-4/2^n-2n/2^n=4-(n+2)/2^(n-1)
所以Sn=n^2+n+4-(n+2)/2^(n-1)
两边同除以n+1
a(n+1)/(n+1)-(an)/n=1/2^n
(an)/n-a(n-1)/(n-1)=1/2^(n-1)
.
(a2)/2-a1=1/2
叠加,中间项减去
a(n+1)/(n+1)-a1=1/2^n+1/2^(n-1)+...+1/2
=(1/2)(1-1/2^n)/(1-1/2)
=1-1/2^n
a(n+1)/(n+1)=2-1/2^n
an/n=2-1/2^(n-1)
(1)通项公式 bn=an/n=2-1/2^(n-1)
(2) an=2n-n/2^(n-1)
设前n项和为Sn=∑2n-∑n/2^(n-1)
Cn=∑2n Tn=∑n/2^(n-1)
则Cn=2[n(n+1)/2]=n(n+1)=n^2+n
Tn=1+2/2+3/2^2+.+n/2^(n-1)
(1/2)Tn=1/2+2/2^2+3/2^3+...+n/2^n
Tn-(1/2)Tn=1+1/2+1/2^2+.+1/2^(n-1)-n/2^n
=(1-1/2^n)/(1-1/2)-n/2^n
(1/2)Tn=2(1-1/2^n)-n/2^n
Tn=4-4/2^n-2n/2^n=4-(n+2)/2^(n-1)
所以Sn=n^2+n+4-(n+2)/2^(n-1)
在数列an中,a1=1,且an=(n/(n-1))a(n-1)+2n*3的(n-2)次方 求an通项公式
在数列an中,a1=1,an+1 2an+2的n次方
在数列{an}中,a1=2,a(n+1)- an = 2的n次方,求通项an n+1在下标.
在数列an中,a1=0,a(n+1)=-a1+3的n次方,(n属于N*)求an通项公式
在数列{an}中,a1=2,a(n+1)=an+ln(1+1/n)
在数列{an}中,a1=1,2a(n+1)=(1+1/n)^2*an,证明数列{an/n^2}是等比数列,并求{an}的
已知数列{an中}a1=3.且an+1=an+2的n次方
在数列{an}中、a1=1、an(角标)+1=2an+2n(n次方)、
已知数列{An}中a1=1.且A(n+1)=6n*2^n-An.求通项公试An
已知在数列An中,A1=2 A(n+1)=An+n 求An的通项公式
在数列{An}中,已知An+A(n+1)=2n (n∈N*)
已知数列an中,a1=1 2a(n+1)-an=n-2/n(n+1)(n+2) 若bn=an-1/n(n+1)