已知函数f(x)=e^x(ax^2+a+1) a∈R.若f(x)≥2/e^2 对任意x∈[-2,-1 ]恒成立,求a的范
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 16:08:19
已知函数f(x)=e^x(ax^2+a+1) a∈R.若f(x)≥2/e^2 对任意x∈[-2,-1 ]恒成立,求a的范围.
由已知得f'(x)=e^x(ax^2+2ax+a+1)
当a=0时,f'(x)=e^x>0
此时f(x)是单调递增的,因此在x∈[-2,-1 ]时,f(x)≥f(-2)=e^(-2)与已知f(x)≥2/e^2矛盾,所以a=0不符合条件,因此a≠0
当a>0时,而ax^2+2ax+a+1的判别式=(2a)^2-4a(a+1)=-4a0,所以f‘(x)>0,即f(x)在[-2,-1]上单调递增,
因此f(x)≥f(-2)=(4a+1+1)/e^2=(5a+1)/e^2≥2/e^2
所以5a+1≥2,从而a≥1/5.
当a
当a=0时,f'(x)=e^x>0
此时f(x)是单调递增的,因此在x∈[-2,-1 ]时,f(x)≥f(-2)=e^(-2)与已知f(x)≥2/e^2矛盾,所以a=0不符合条件,因此a≠0
当a>0时,而ax^2+2ax+a+1的判别式=(2a)^2-4a(a+1)=-4a0,所以f‘(x)>0,即f(x)在[-2,-1]上单调递增,
因此f(x)≥f(-2)=(4a+1+1)/e^2=(5a+1)/e^2≥2/e^2
所以5a+1≥2,从而a≥1/5.
当a
已知函数f(x)=(x^2-x-1/a)e^ax(a>0) 若不等式f(x)+5/a≥0对x∈R恒成立,求a的取值范围
已知函数f(x)=e^x-ax,a>0,若对一切x∈R,f(x)≥1恒成立,求a的取值范围
已知函数f(x)=ax²+2x-a,若对任意a∈[-1,1],f(x)>0恒成立,求x的取值范围
已知函数f(x)=ax^3+bx^2+x+1(x,a,b∈R),若对任意的实数x,f(x)≥0恒成立,求b范围
已知函数f(x)=ax^2-2(a+1)x+4,(1)若a>0,解不等式f(x)0对任意x∈R恒成立,求a的取值范
函数f(x)=e^x-(2a+e)x,a属于R.(1)若对任意x≥1,不等式f(x)≥1恒成立,求实数a的取值范围; 第
已知函数f(x)=x+alnx,其中a为常数,且a≤-1 ,若f(x)≤e-1对任意x∈[e,e^2]恒成立,求实数的取
设函数f(x)=ax^2+bx+1(a,b∈R) 1、若f(-1)=0且对任意实数x,f(x)≥0恒成立,求f(x)的表
已知函数f(x)=x^2+ax+3.(1)当x∈R,求使f(x)≥a恒成立时a的取值范围.
已知函数f(x)=e^ax-x(a≠0)若对一切x∈R f(x)≥1,恒成立,求a的取值范围
已知函数F(X)=e的x次方-ax-1 求F(x)最小值 若F(x)大于等于0对任意x属于r成立 求a的值
设函数f(x)=ax^2+bx+1(a、b∈R)满足:f(-1)=0,且对任意实数f(x)≥0恒成立:(1)求f(x)的