正交矩阵的题x属于Rn,求证存在一正交矩阵O,使得Ox=(/x/,0,....,0)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 21:29:29
正交矩阵的题
x属于Rn,求证存在一正交矩阵O,使得Ox=(/x/,0,....,0)
x属于Rn,求证存在一正交矩阵O,使得Ox=(/x/,0,....,0)
不能做图片编辑,只好以文字描述了,可能要转化为书面的形式才能看明白:
1、了解Givens矩阵(初等旋转矩阵)
Givens矩阵Tij的定义是:第i行第i列、第j行第j列元素都为c ,第i行第j列元素为s ,第j行第i列元素为-s .除了上面提到的i行i列、j行j列之外,主对角线上的其它元素都为1,上面没有提到的矩阵元素都是0,且c、s满足:c的平方加上s的平方等于1.
Tij也可以记做Tij(c,s) .
2、显然,Given矩阵是正交矩阵,且Tij(c,s)的逆矩阵为Tij(c,-s).
3、假设x=(x1,x2,x3,...,xn)'.
先考虑x1不为0的情形.对x构造Givens矩阵T12(c,s).其中,c=x1/根号(x1的平方 加上 x2的平方),s=x2/根号(x1的平方 加上 x2的平方).计算可得:T12x=(根号(x1的平方 加上 x2的平方),0,x3,...xn)'.
可见,第二个元素被变换为0.
仿照上面的步骤,再对T12x构造Givens矩阵T13(c,s),其中,c=根号(x1的平方 加上 x2的平方)/根号(x1的平方 加上 x2的平方 加上x3的平方),
s=x3/根号(x1的平方 加上 x2的平方 加上x3的平方).
计算可得:T13(T12x)=(根号(x1的平方 加上 x2的平方 加上 x3的平方),0,0,x4,...,xn).
可见,第三个元素也被化为了0.
如此继续下去,最后对T1 n-1 x 构造Givens矩阵,T1n(c,s),即可得到:
T1n(T1 n-1 ...T12)x = |x| e1
令T=T1n 乘以 T1 n-1 乘以 ...乘以T12,显然T也是正交矩阵.
上面是对于x1不等于0的情况得证;
当x1等于0时,考虑x1= ...=x k-1=0,xk不等于0(其中k界于1和n之间),此时,上面的步骤只需要从T1k开始即可.
证毕.
事实上,这是《矩阵论》一书中的一个定理,该书为程云鹏主编,西北工业出版社出版,定理4.3,位于198页,好像网上有电子版的书,去下载来看就很明白了.
1、了解Givens矩阵(初等旋转矩阵)
Givens矩阵Tij的定义是:第i行第i列、第j行第j列元素都为c ,第i行第j列元素为s ,第j行第i列元素为-s .除了上面提到的i行i列、j行j列之外,主对角线上的其它元素都为1,上面没有提到的矩阵元素都是0,且c、s满足:c的平方加上s的平方等于1.
Tij也可以记做Tij(c,s) .
2、显然,Given矩阵是正交矩阵,且Tij(c,s)的逆矩阵为Tij(c,-s).
3、假设x=(x1,x2,x3,...,xn)'.
先考虑x1不为0的情形.对x构造Givens矩阵T12(c,s).其中,c=x1/根号(x1的平方 加上 x2的平方),s=x2/根号(x1的平方 加上 x2的平方).计算可得:T12x=(根号(x1的平方 加上 x2的平方),0,x3,...xn)'.
可见,第二个元素被变换为0.
仿照上面的步骤,再对T12x构造Givens矩阵T13(c,s),其中,c=根号(x1的平方 加上 x2的平方)/根号(x1的平方 加上 x2的平方 加上x3的平方),
s=x3/根号(x1的平方 加上 x2的平方 加上x3的平方).
计算可得:T13(T12x)=(根号(x1的平方 加上 x2的平方 加上 x3的平方),0,0,x4,...,xn).
可见,第三个元素也被化为了0.
如此继续下去,最后对T1 n-1 x 构造Givens矩阵,T1n(c,s),即可得到:
T1n(T1 n-1 ...T12)x = |x| e1
令T=T1n 乘以 T1 n-1 乘以 ...乘以T12,显然T也是正交矩阵.
上面是对于x1不等于0的情况得证;
当x1等于0时,考虑x1= ...=x k-1=0,xk不等于0(其中k界于1和n之间),此时,上面的步骤只需要从T1k开始即可.
证毕.
事实上,这是《矩阵论》一书中的一个定理,该书为程云鹏主编,西北工业出版社出版,定理4.3,位于198页,好像网上有电子版的书,去下载来看就很明白了.
设a,b属于Rn,A为正交矩阵,证明:1:|Aa|=|a|; 2:=.
A是正交矩阵,证明:存在一个正交矩阵B,使得B的逆乘以A乘以B=diag(Er,-Es),我记得应该是相似于
正交矩阵的平方是不是正交矩阵?
正交矩阵的题
正交矩阵属于不同特征值的特征向量一定正交吗
设A,B为2n阶正交矩阵,且|AB|= -1,证明存在非零向量x,使得Ax=Bx
正交矩阵的性质
大一线性代数题证明:若A是n阶实对称矩阵,并且A^2=A,则存在正交矩阵T,使得 T^(-1)AT = (Er 0 0
线性代数正交矩阵的问题
正交矩阵与正定矩阵的关系
正交矩阵的一个证明题a是n维实列向量,a不等于0,矩阵A=E-kaaT,k为非零常数,则A为正交矩阵的充分必要条件为k=
求证 正交矩阵的特征值只能是1或-1