圆锥曲线中哪些情况可以产生定点或定值?针对一般的情况,没有特殊数据的构造.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 09:30:03
圆锥曲线中哪些情况可以产生定点或定值?针对一般的情况,没有特殊数据的构造.
例如:抛物线y2=2px上,过顶点(0.0)的两条直线分别为L1和L2,它们的倾斜角之和为定值@.
且分别与抛物线交于A.B两点 ..那么直线AB过定点(-2p.-2p/tan@).
如上例子,要大概写出结论
不要带具体数据的,直接是a.b.c或p.要针对一般情况.
例如:抛物线y2=2px上,过顶点(0.0)的两条直线分别为L1和L2,它们的倾斜角之和为定值@.
且分别与抛物线交于A.B两点 ..那么直线AB过定点(-2p.-2p/tan@).
如上例子,要大概写出结论
不要带具体数据的,直接是a.b.c或p.要针对一般情况.
一般先尝试两下比较特殊的极端情况下看看定点,或者定直线是什么才好针对性的做题,反正是先出答案再做才是明智的(小部分题目不需要求出来,这样我们就不妨随便假设为任意一个点,再证明最后结论与它无关即可).
比如看这道题.
已知A、B、C是抛物线Y^2=8X上的点,B(2,4),F是焦点,且2BF=AF+CF.证明线段AC的垂直平分线比过定点,并求该点.
解题思路:思路假设B=A,则可知C(2,-4);从而知道若存在定点必在x轴上,再设为(t,0)问题就简单多了 ,答案(6,0).
另外要善于挖掘相关条件做简化,比如
已知椭圆方程为x2/4+y2=1,点M(√2,√2/2),过M作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于M).
(1)求证直线AB的斜率为定值.
这里如果我们能懂得用中位线平行于底边的性质问题就能很容易简化.
思路运用中位线斜率等于AB斜率来证明:
直线一:y-√2/2=k(x-√2),代入椭圆方程整理得
(4k^2+1)x^2-(8√2k^2-4√2k)x+P=0;所以MA中点A'横坐标运用伟达定理得
xA'=(4√2k^2-2√2k)/(4k^2+1);
直线二:y-√2/2=-k(x-√2),同理可求得MB中点B'的横坐标为
xB'=(4√2k^2+2√2k)/(4k^2+1);
而yA'满足直线一方程,yB'满足直线二方程,两式相减得
yB'-yA'=-k(xB'+xA')+2√2k=-k(8√2k^2)/(4k^2+1)+2√2k;
xB'-xA'=4√2k/(4k^2+1);
两式相比通分化简即可消去k得到定值为1/2 .(这里你看到了它与我们选的k无关)
比如看这道题.
已知A、B、C是抛物线Y^2=8X上的点,B(2,4),F是焦点,且2BF=AF+CF.证明线段AC的垂直平分线比过定点,并求该点.
解题思路:思路假设B=A,则可知C(2,-4);从而知道若存在定点必在x轴上,再设为(t,0)问题就简单多了 ,答案(6,0).
另外要善于挖掘相关条件做简化,比如
已知椭圆方程为x2/4+y2=1,点M(√2,√2/2),过M作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于M).
(1)求证直线AB的斜率为定值.
这里如果我们能懂得用中位线平行于底边的性质问题就能很容易简化.
思路运用中位线斜率等于AB斜率来证明:
直线一:y-√2/2=k(x-√2),代入椭圆方程整理得
(4k^2+1)x^2-(8√2k^2-4√2k)x+P=0;所以MA中点A'横坐标运用伟达定理得
xA'=(4√2k^2-2√2k)/(4k^2+1);
直线二:y-√2/2=-k(x-√2),同理可求得MB中点B'的横坐标为
xB'=(4√2k^2+2√2k)/(4k^2+1);
而yA'满足直线一方程,yB'满足直线二方程,两式相减得
yB'-yA'=-k(xB'+xA')+2√2k=-k(8√2k^2)/(4k^2+1)+2√2k;
xB'-xA'=4√2k/(4k^2+1);
两式相比通分化简即可消去k得到定值为1/2 .(这里你看到了它与我们选的k无关)
宾语从句中,从句的语序有哪些特殊情况?
一般疑问句最后的语气一定要声调吗?有没有特殊情况?
在我们的生活中,哪些情况下可以看到产生二氧化碳气体
英语中动词后面的介词或副词在那些情况下可以省略哪些情况不能省
飞机构造里起落架的分布情况有哪些?
圆锥曲线中的定点定值问题
英语特殊疑问句中,特殊疑问词加一般疑问句,其中的some是不是任何情况都改成any?
英语一般疑问句中,如果有some,则一定要把some变any吗?是否有特殊情况(表示建议或请求的疑问句除外).
反义疑问句的特殊情况
在特殊疑问句中,是不是对所有的时间进行提问,都可以用when?有什么特殊情况吗?
物理题中没有告诉g等于多少的情况下,g取多少?是不是取10或9.8都可以?
针对化学危险废物焚烧后的情况.