作业帮 > 数学 > 作业

已知a>0且a≠1,f(logax)=x2+2x-1

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 21:01:54
已知a>0且a≠1,f(logax)=x2+2x-1
(1)求f(x)的解析式和定义域;
(2)若函数f(x)在区间[-1,1]上的最大值是
31
9
已知a>0且a≠1,f(logax)=x2+2x-1
(1)由a>0且a≠1,f(logax)=x2+2x-1,可得 x>0,
故函数的定义域为(0,+∞).
令t=logax,则 x=at,且f(t)=a2t+2at-1,t∈R,
∴f(x)=a2x+2ax-1,x∈R.
(2)由于-1≤x≤1时,当a>1时,则
1
a≤ax≤a.
令ax=m,则
1
a≤m≤a,f(x)=g(m)=(ax+1)2-2=(m+1)2-2,
显然,g(m)在[
1
a,a]上是增函数,故函数的最大值为g(a)=(a+1)2-2=
31
9,
解得a=
4
3.
当0<a<1时,则a≤ax
1
a.
令ax=m,则 a≤m≤
1
a,f(x)=g(m)=(ax+1)2-2=(m+1)2-2,
显然,g(m)在[a,
1
a]上是增函数,故函数的最大值为g(
1
a)=(
1
a+1)2-2=
31
9,
解得a=
3
4.
综上可得,a=
4
3,或a=
3
4.