作业帮 > 数学 > 作业

(sinx+siny)^2+(cosx+cosy)^2为什么等于1+1+2(sinxsiny+cosxcosy)=2+2

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 03:57:30
(sinx+siny)^2+(cosx+cosy)^2为什么等于1+1+2(sinxsiny+cosxcosy)=2+2cos(x-y)
(sinx+siny)^2+(cosx+cosy)^2为什么等于1+1+2(sinxsiny+cosxcosy)=2+2
(sinx+siny)^2+(cosx+cosy)^2
= sinx^2 + siny^2 + 2sinxsiny + cosx^2 + cosy^2 + 2cosxcosy
=(sinx^2 + cosx^2)+(siny^2 + cosy^2)+ 2sinxsiny + 2cosxcosy
= 1 + 1 + 2 (sinxsiny + cosxcosy)
再根据 余弦差交公式 sinxsiny+cosxcosy = cos(x-y)
即得 (sinx+siny)^2+(cosx+cosy)^2
= 1 + 1 + 2 (sinxsiny + cosxcosy)
= 2 + 2cos(x-y)