双曲线焦点在x轴上,直线l过点【a,0】和【0,b】,点【1,0】到直线l的距离与点【-1,0】到直线距离之和
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 05:33:14
双曲线焦点在x轴上,直线l过点【a,0】和【0,b】,点【1,0】到直线l的距离与点【-1,0】到直线距离之和
大于等于0.8c,求双曲线的e的取值范围
大于等于0.8c,求双曲线的e的取值范围
由截距式易知直线L:x/a+y/b=1,即bx+ay-ab=0
依题并结合点到直线距离公式有:
|b-ab|/√(a^2+b^2)+|-b-ab|/√(a^2+b^2)
而a^2+b^2=c^2,e=c/a
则有|a-1|+|a+1|≥4c^2/[5√(e^2-1)]
由绝对值不等式知|a-1|+|a+1|≤|(a-1)+(a+1)|=2a(注意到a>0)
则有2a≥4c^2/[5√(e^2-1)]
即4e^2-25e^2+25≤0(注意到e>0)
解得√5/2≤e≤√5
依题并结合点到直线距离公式有:
|b-ab|/√(a^2+b^2)+|-b-ab|/√(a^2+b^2)
而a^2+b^2=c^2,e=c/a
则有|a-1|+|a+1|≥4c^2/[5√(e^2-1)]
由绝对值不等式知|a-1|+|a+1|≤|(a-1)+(a+1)|=2a(注意到a>0)
则有2a≥4c^2/[5√(e^2-1)]
即4e^2-25e^2+25≤0(注意到e>0)
解得√5/2≤e≤√5
:已知定点A(-1,0),定直线L:X=0.5,不在X轴上的动点P与点F的距离是到L的2倍.过F的直线交轨迹于B,C直线
已知直线L:4 :4x-3y+6=0和直线L :x=-1,抛物线y =4x上一动点p到直线L 到L 的距离之和的最小值是
设双曲线x/a-y/b=1(b>a>0)的半焦距为c,直线l过点(a,0),(0,b),已知原点到直线l的距离为根号3/
jb 122 15 已知点A(2,3)和点B(5,2)到直线L的距离相等,且直线L过直线L1 3x-y-1=0和L2 x
已知双曲线x2/a2-y2/b2=1,直线l过A{a,0}B{0,b},左焦点F1到直线l的距离
已知A(4,-3)与B(2,-1)关于直线l对称,在l上有一点p 使p点到直线4x+3y-2=0的距离等于2 则点P的坐
已知抛物线y^2=2px(p>0)上纵坐标为1的点到焦点的距离为P,过点p(1,0)做斜率为k的直线l交抛物线与A,B两
第一题:若直线L过点A(0,1),且B(2,-1)到L的距离是点C(1,2)到L的距离的2倍,求直线L的方程.
若直线L过点A(0,1),且B(2,-1)到L的距离是点C(1,2)到L的距离的2倍,求直线L的方程
直线L过点A(0,1),且B(2,1)到L的距离是点C(1,2)到L的距离的2倍,求直线L的方程
在同一个平面内,n=(-3,0,4) 与直线l垂直,点A(1,-1,2)在直线l上,则点P(3,5,0)到直线l的距离为
已知直线l过点P(0,2) 且点A(1,1)B(-3,1)到l距离相等 求l的方程