证明:若函数f(x)∈C[0,+∞],且lim(x->+∞)f(x)=A,则lim(x->+∞)[1/x*∫(0->x)
设函数f(x)在(a,+∞ )上可导,且lim(x->+∞ )(f(x)+f'(x))=0,证明:lim(x->+∞ )
已知 lim(x->+∞)f'(x)=0 证明:lim(x->+∞)f(x)=常数
f(x)是定义在(0,+∞)上的连续可微函数,且lim(x->+∞)(f(x)+f ' (x))=0,证明lim(x->
设函数f(x)有界,又lim(x→∞)g(x)=0,证明:lim(x→∞)f(x)g(x)=0(证明过程)
函数f(x)在[1,+∞)上具有连续导数,且lim(x→+∞)f'(x)=0,则...
若函数f(x),g(x)满足lim[f(x)-g(x)]=0,x-∞,则limf(x)=limg(x),x-∞
f(x)在[a,+无穷)内可导,且lim[f(x)+kf'(x)]=l(x→∞)(k>0).证明:limf(x)=l,l
设函数f(x)有二阶连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
设函数f(x)有二姐连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
f二阶可导,如果lim x->∞(f(x)+2f'(x)+f''(x))=l证明lim x->∞ f(x)=l lim
f(x)在正负无穷内可倒,且在x→∞时 limf '(x)=e,lim[ (x+c)/(x-c)]^x=lim[f(x)
设f(x)有二阶导数,且f''(X)>0,lim(x趋于0)f(x)/x=1 ..证明:当x>0时,有f(x)>x