作业帮 > 数学 > 作业

求幂平均值不等式的均值证法,及舒尔不等式证法

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 01:10:46
求幂平均值不等式的均值证法,及舒尔不等式证法
求幂平均值不等式的均值证法,及舒尔不等式证法
据我所知几年以前的竞赛书上都只介绍结论,但不给出证明.原因是什么呢?
因为证明要用到二阶导数来判断幂函数的凸性,还要用到琴生不等式.而老教材中导数还没有进入教学内容.
不证明幂平均不等式是不得已的事.
希望可以帮到你:)
舒尔不等式:
对于所有的非负实数x、y、z和正数t,都有:已知x,y,z>=0
则∑(x^t)(x-y)(x-z)>=0
当且仅当x = y = z,或其中两个数相等而另外一个为零时,等号“=”成立.当t是正的偶数时,不等式对所有的实数x、y和z都成立.

舒尔(schur)不等式的证明:
不妨设x>=y>=z
∑x(x-y)(x-z)
=x(x-y)(x-z)+y(y-x)(y-z)+z(z-x)(z-y)
>=x(x-y)(x-z)+y(y-x)(y-z)
>=x(x-y)(y-z)+y(y-x)(y-z)
=(x-y)^2(y-z)
>=0
t不是1时同理可证
事实上,当t为任意实数时,我们仍可证明Schur不等式成立.
Schur不等式虽不是联赛大纲中规定掌握的不等式,但在联赛不等式证明题中仍能发挥重要作用.
希望可以帮到你:)