P是圆X^2+Y^2=4上一动点,Q(4,0)
已知点Q(2根号2,0)及抛物线x平方=4y上一动点P(x,y),则y+|PQ|的最小值是:
若已知点Q(4,0)和抛物线y=(1/4)x^2+2上一动点p(x,y),则y+|PQ|的最小值为
已知点Q(2√2,0) 及抛物线y=x^2/4 上一动点P(x,y),则y+|PQ|的最小值是2 请问是怎么求出的?
关于圆锥曲线的数学题1.已知点Q(2√2,0)及抛物线x^2=4y上一动点p(x,y),则y+|PQ|的最小值是?2.设
参数 已知点A(√3,0)及圆C:x^2+y^2=4上一动点Q,线段AQ的中垂线交OQ于点P(1).求点P的轨迹方程(2
已知直线l:4x-3y-20=0,点P是圆O:x^2+y^2+6x-2y-15=0上一动点,求点P到直线l的距离的最大值
一动点p在曲线x^2+y^2=4上运动,求它与定点Q(3,0)的连线中点m的轨迹方程
在直角坐标系中,A(1,0),B(3,0),P是y轴上一动点,在直线y=1/2x上是否存在点Q,使A、B、P、Q为顶点的
点n[4,0],圆m[x+4]^2+y^2=4,p轨迹方程,点a是圆m上一动点,线段an垂直平分线交直线am于点p,则p
已知圆M:x^2+(y-4)^2=4,直线l的方程为x-2y=0,点P是直线l上一动点,过点P作圆的切线PA,PB,切点
若P为抛物线y^2=x上一动点,Q为圆C (x-4)^2+y^2=1上的一个动点,则|PQ|的最小值为
请教一道抛物线题已知点Q(2根号2,0)及抛物线y=(x^2)/4上一动点P(x,y),求y+|PQ|的最小值?