微积分-判断题如果f(x) 在(a,b)是上升的,那么所有x在(a,b)上f'(x)是正数.
f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)≤0,对任意正数a,b,若a
几道微积分的判断题,1、设y=f(x)在[a,b]上连续,f(a)=f(b),则在(a,b)内至少存在一点ε∈(a,b)
已知函数y=f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x+x2,若存在正数a,b,使得当x∈[a,b]时,f
定义在R上的函数f(X)有f(a+x)=f(a-x),f(b+x)=f(b-x),(a不等于b)求证f(x)是11b 2
有道函数填空题f(x)是定义在(0,正无穷)上的非负可导函数,且满足x*f ‘ (x)-f(x)≤0,对任意正数a、b,
设偶函数f(x)在区间[a,b]上是增函数(a>0),判断F(x)=(1/2)^f(x)-x 在区间[-b,-a]上的单
已知实数a∈R函数f(x)=x+ax如果f(x)是R上的偶函数求a的值 判断f(x)在(0,+
一道有挑战的微积分F(x)在【a,b】上连续,且f(x)>0,证明
微积分题的证明设f(x)在[a,b]上一阶可导,在(a,b)内二阶可导,且满足f(a)=f(b)=0,f'(a)f'(b
已知函数y=f(x)是定义在R上的奇函数,当x大于等于0时f(x)=2x-x的平方.问是否存在这样的正数a,b,当x属于
在区间(a,b)上,函数f(x),g(x)都是增函数,则F(x)=f(x)g(x)在(a,b)上是
用均值定理求证~~用均值定理证明如果导数f'(x)对开区间(A,B)内所有x有效,那么方程f(x)在(A,B)内是下降趋